MODELING COMPLEX FLOW INDUCED BY WATER WAVES PROPAGATION OVER SUBMERGED SQUARE OBSTACLES

Author(s):  
Mona Abdeltawab Gomaa ◽  
Tamer HMA Kasem ◽  
Andreas Schlenkhoff

Submerged breakwaters are efficient structures used for shore protection. Many design features of these structures are captured upon modeling wave propagation over submerged square obstacles. The presence of separation vortices and large free surface deformations complicates the problem. A multiphase turbulent numerical model is developed using ANSYS commercial package. Careful domain discretization is done employing suitable mesh clustering to capture high gradients. Various numerical model parameters are provided, including grid size and time step. Special attention is directed towards clarifying turbulence initial conditions. Stable simulation results are obtained within acceptable computational time. Numerical results are validated quantitatively using subsurface measurements. Comparison along continuous horizontal and vertical velocity profiles is provided. Temporal and spatial model resolutions are illustrated for three test cases. The effect of wave period and height is well focused. The unsteady vortical structure is visualized. The incident wave energy is calculated and validated against theoretical values. The wave energy dissipation characteristics are briefly explained.

2018 ◽  
Author(s):  
Adel Albaba ◽  
Massimiliano Schwarz ◽  
Corinna Wendeler ◽  
Bernard Loup ◽  
Luuk Dorren

Abstract. This paper presents a Discrete Element-based elasto-plastic-adhesive model which is adapted and tested for producing hillslope debris flows. The numerical model produces three phases of particle contacts: elastic, plastic and adhesion. The model capabilities of simulating different types of cohesive granular flows were tested with different ranges of flow velocities and heights. The basic model parameters, being the basal friction (ϕb) and normal restitution coefficient (ϵn), were calibrated using field experiments of hillslope debris flows impacting two sensors. Simulations of 50 m3 of material were carried out on a channelized surface that is 41 m long and 8 m wide. The calibration process was based on measurements of flow height, flow velocity and the pressure applied to a sensor. Results of the numerical model matched well those of the field data in terms of pressure and flow velocity while less agreement was observed for flow height. Those discrepancies in results were due in part to the deposition of material in the field test which are not reproducible in the model. A parametric study was conducted to further investigate that effect of model parameters and inclination angle on flow height, velocity and pressure. Results of best-fit model parameters against selected experimental tests suggested that a link might exist between the model parameters ϕb and ϵn and the initial conditions of the tested granular material (bulk density and water and fine contents). The good performance of the model against the full-scale field experiments encourages further investigation by conducting lab-scale experiments with detailed variation of water and fine content to better understand their link to the model's parameters.


2019 ◽  
Vol 7 (5) ◽  
pp. 157 ◽  
Author(s):  
Lei Ren ◽  
Jianming Miao ◽  
Yulong Li ◽  
Xiangxin Luo ◽  
Junxue Li ◽  
...  

In order to obtain forward states of coastal currents, numerical models are a commonly used approach. However, the accurate definition of initial conditions, boundary conditions and other model parameters are challenging. In this paper, a novel application of a soft computing approach, random forests (RF), was adopted to estimate surface currents for three analysis points in Galway Bay, Ireland. Outputs from a numerical model and observations from a high frequency radar system were used as inputs to develop soft computing models. The input variable structure of soft computing models was examined in detail through sensitivity experiments. High correlation of surface currents between predictions from RF models and radar data indicated that the RF algorithm is a most promising means of generating satisfactory surface currents over a long prediction period. Furthermore, training dataset lengths were examined to investigate influences on prediction accuracy. The largest improvement for zonal and meridional surface velocity components over a 59-h forecasting period was 14% and 37% of root mean square error (RMSE) values separately. Results indicate that the combination of RF models with a numerical model can significantly improve forecasting accuracy for surface currents, especially for the meridional surface velocity component.


Author(s):  
Zhiyao Song ◽  
Honggui Zhang ◽  
Jun Kong ◽  
Ruijie Li ◽  
Wei Zhang

Introduction of an effective wave elevation function, the simplest time-dependent hyperbolic mild-slope equation has been presented and an effective numerical model for the water wave propagation has been established combined with different boundary conditions in this paper. Through computing the effective wave elevation and transforming into the real transient wave motion, then related wave heights are computed. Because the truncation errors of the presented model only induced by the dissipation terms, but those of Lin’s model (2004) contributed by the convection terms, dissipation terms and source terms, the error analysis shows that calculation stability of this model is enhanced obviously compared with Lin’s one. The tests show that this model succeeds to the merit in Lin’s one and the computer program simpler, computational time shorter because of calculation stability enhanced efficiently and computer memory decreased obviously. The presented model has the capability of simulating exactly the location of transient wave front by the speed of wave propagation in the first test, which is important for the real-time prediction of the arrival time of water waves generated in the deep sea. The model is validated against experimental data for combined wave refraction and diffraction over submerged circular shoal on a flat bottom in the second test. Good agreements are gained. The model can be applied to the theory research and engineering applications about the wave propagation in the coastal waters.


2006 ◽  
Vol 52 (176) ◽  
pp. 89-98 ◽  
Author(s):  
J. Van Den Berg ◽  
R.S.W. Van De Wal ◽  
J. Oerlemans

AbstractThis paper assesses a two-dimensional, vertically integrated ice model for its numerical properties in the calculation of ice-sheet evolution on a sloping bed using the shallow-ice approximation. We discuss the influence of initial conditions and individual model parameters on the model’s numerical behaviour, with emphasis on varying spatial discretizations. The modelling results suffer badly from numerical problems. They show a strong dependence on gridcell size and we conclude that the widely used gridcell spacing of 20 km is too coarse. The numerical errors are small in each single time-step, but increase non-linearly over time and with volume change, as a result of feedback of the mass balance with height. We propose a new method for the calculation of the surface gradient near the margin, which improves the results significantly. Furthermore, we show that we may use dimension analysis as a tool to explain in which situations numerical problems are to be expected.


2021 ◽  
Vol 25 (7) ◽  
pp. 4081-4097
Author(s):  
Concetta Di Mauro​​​​​​​ ◽  
Renaud Hostache ◽  
Patrick Matgen ◽  
Ramona Pelich ◽  
Marco Chini ◽  
...  

Abstract. Coupled hydrologic and hydraulic models represent powerful tools for simulating streamflow and water levels along the riverbed and in the floodplain. However, input data, model parameters, initial conditions, and model structure represent sources of uncertainty that affect the reliability and accuracy of flood forecasts. Assimilation of satellite-based synthetic aperture radar (SAR) observations into a flood forecasting model is generally used to reduce such uncertainties. In this context, we have evaluated how sequential assimilation of flood extent derived from SAR data can help improve flood forecasts. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. To this end, two assimilation methods are explored and compared: the sequential importance sampling method (standard method) and its enhanced method where a tempering coefficient is used to inflate the posterior probability (adapted method) and reduce degeneracy. The experimental results show that the assimilation of SAR probabilistic flood maps significantly improves the predictions of streamflow and water elevation, thereby confirming the effectiveness of the data assimilation framework. In addition, the assimilation method significantly reduces the spatially averaged root mean square error of water levels with respect to the case without assimilation. The critical success index of predicted flood extent maps is significantly increased by the assimilation. While the standard method proves to be more accurate in estimating the water levels and streamflow at the assimilation time step, the adapted method enables a more persistent improvement of the forecasts. However, although the use of a tempering coefficient reduces the degeneracy problem, the accuracy of model simulation is lower than that of the standard method at the assimilation time step.


2011 ◽  
Vol 1 (7) ◽  
pp. 16
Author(s):  
I.J. Popov

Within the last few years the Soviet hydraulic engineers have been making continuous efforts to avoid use of concrete slabs and blocks and stone riprap as protective cover of upstream slopes of earth dams and reservoir shores against the disrupting effects of waves generated by the action of wind upon the water surface. Their efforts have been aimed at finding the cheaper procedure. Of all the possible ways of slope and shore protection, an engineering measure, the idea of which consists in distributing the wave energy dissipation over a considerably large portion of a sufficiently gentle slope, should be given a special attention. This measure makes it possible to substantially relieve the protective cover and in some cases to leave the slope uncovered. The possibility of unlined slopes, stable enough agains wave action is proved out by the experience of reservoir operation. Shores and underwater slopes of artificial lakes composed of non-cohesive soils are usually subject to considerable disintegration due to wave action. The process of disintegration which goes on rather fast at the initial stage of lake existence, slowff down with the formation of a flat lake-side shallow, whereon dissipation of wave energy takes place. At a certain stage of development the underwater slope assumes such dimensions and outlines which enable it to dissipate the whole of the wave energy and practically to protect shores from further destruction. The profile of the slope at which it will permanently stand underwater is referred to as the "profile of equilibrium" or "dynamically stable profile". The term "equilibrium" in this case doesn't imply absolute immovability of the material acted on by waves, but stands for such a movable state at which particles of the soil are making oscillatory movements round some middle position without the resultant movement neither towards nor off shore.


2019 ◽  
Vol 19 (11) ◽  
pp. 2339-2358
Author(s):  
Adel Albaba ◽  
Massimiliano Schwarz ◽  
Corinna Wendeler ◽  
Bernard Loup ◽  
Luuk Dorren

Abstract. This paper presents a discrete-element-based elastoplastic-adhesive model which is adapted and tested for producing hillslope debris flows. The numerical model produces three phases of particle contacts: elastic, plastic and adhesive. A parametric study was conducted investigating the effect of model parameters and inclination angle on flow height, velocity and pressure, in order to define the most sensitive parameters to calibrate. The model capabilities of simulating different types of cohesive granular flows were tested with different ranges of flow velocities and heights. The basic model parameters, the microscopic basal friction (ϕb) and ratio between stiffness parameters k1/k2, were calibrated using field experiments of hillslope debris flows impacting a pressure-measuring sensor. Simulations of 50 m3 of material were carried out on a channelized surface that is 41 m long and 8 m wide. The calibration process was based on measurements of flow height, flow velocity and the pressure applied to a sensor. Results of the numerical model matched those of the field data in terms of pressure and flow velocity well while less agreement was observed for flow height. Those discrepancies in results were due in part to the deposition of material in the field test, which is not reproducible in the model. Results of best-fit model parameters against selected experimental tests suggested that a link might exist between the model parameters ϕb and k1/k2 and the initial conditions of the tested granular material (bulk density and water and fine contents). The good performance of the model against the full-scale field experiments encourages further investigation by conducting lab-scale experiments with detailed variation in water and fine content to better understand their link to the model's parameters.


2004 ◽  
Vol 126 (1) ◽  
pp. 126-131 ◽  
Author(s):  
Anping Guo ◽  
Steve Batzer

In this paper, the application of the substructure methodology to contact-impact analysis of flexible multibody systems is validated. Various impact model parameters that affect the model’s accuracy are presented. A contact-impact system is used that consists of a flexible cantilever bar longitudinally struck at its free end by a rigid body moving at a finite velocity. First, a dynamic model using the substructure method is established. Second, the initial conditions of the system’s dynamic responses during contact-impact are derived. Finally, a numeric contact-impact simulation is performed. The excellent agreement between the numeric solutions to both the substructure model and the analytical solutions demonstrates that the substructure model can successfully describe stress wave propagation within flexible bodies during contact-impact. The method can also clearly display the contact force time history and deformation distribution along the bar during contact-impact time and correctly predict the displacement of the contact surface of the flexible bar and the contact duration of the two bodies. It is shown that a larger substructure number will improve the accuracy of the numerical solutions, but an excessive number will lower the model’s accuracy since increasingly fine substructures increase the number of modal coordinates and lead to more serious computational round off errors and longer computational time.


1988 ◽  
Vol 1 (21) ◽  
pp. 41 ◽  
Author(s):  
Akira Watanabe ◽  
Mohammad Dibajnia

A numerical model is presented for nearshore wave deformation due to shoaling and breaking, and to decay and recovery in the surf zone. The model is based on a set of time-dependent mild slope equations including a term of wave energy dissipation caused by breaking. Its applicability is demonstrated by comparisons between the computations and the measurements of cross-shore distributions of the wave height and potential energy over typical beach configurations.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 53-61
Author(s):  
Ben Chie Yen

Urban drainage models utilize hydraulics of different levels. Developing or selecting a model appropriate to a particular project is not an easy task. Not knowing the hydraulic principles and numerical techniques used in an existing model, users often misuse and abuse the model. Hydraulically, the use of the Saint-Venant equations is not always necessary. In many cases the kinematic wave equation is inadequate because of the backwater effect, whereas in designing sewers, often Manning's formula is adequate. The flow travel time provides a guide in selecting the computational time step At, which in turn, together with flow unsteadiness, helps in the selection of steady or unsteady flow routing. Often the noninertia model is the appropriate model for unsteady flow routing, whereas delivery curves are very useful for stepwise steady nonuniform flow routing and for determination of channel capacity.


Sign in / Sign up

Export Citation Format

Share Document