axonal arborization
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Georgina Kontou ◽  
Pantelis Antonoudiou ◽  
Marina Podpolny ◽  
Blanka R Szulc ◽  
I Lorena Arancibia-Carcamo ◽  
...  

The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²⁺-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in parvalbumin interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization while PV+ interneuron mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30 – 80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 136
Author(s):  
Nadine F. Joseph ◽  
Supriya Swarnkar ◽  
Sathyanarayanan V Puthanveettil

Neurons, regarded as post-mitotic cells, are characterized by their extensive dendritic and axonal arborization. This unique architecture imposes challenges to how to supply materials required at distal neuronal components. Kinesins are molecular motor proteins that mediate the active delivery of cellular materials along the microtubule cytoskeleton for facilitating the local biochemical and structural changes at the synapse. Recent studies have made intriguing observations that some kinesins that function during neuronal mitosis also have a critical role in post-mitotic neurons. However, we know very little about the function and regulation of such kinesins. Here, we summarize the known cellular and biochemical functions of mitotic kinesins in post-mitotic neurons.


2020 ◽  
Author(s):  
Georgina Kontou ◽  
Pantelis Antonoudiou ◽  
Marina Podpolny ◽  
I. Lorena Arancibia-Carcamo ◽  
Nathalie F. Higgs ◽  
...  

SUMMARYThe spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca2+-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in parvalbumin interneurons and how changes in mitochondrial trafficking could alter brain network activity. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30 – 80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.


2020 ◽  
Author(s):  
Nozomu Matsumoto ◽  
Ikuma Hori ◽  
Tomoya Murase ◽  
Takahiro Tsuji ◽  
Seiji Miyake ◽  
...  

ABSTRACTIn the central nervous system, many neurons develop axonal arbors that are crucial for information processing. Previous studies have demonstrated that premature axons contain motile and stationary mitochondria, and their balance is important for axonal arborization. However, the mechanisms by which neurons determine the positions of stationary mitochondria as well as their turnover remain to be elucidated. In this study, we investigated the regulation of spatiotemporal group dynamics of stationary mitochondria. We observed that the distribution of stationary mitochondrial spots along the unmyelinated and nonsynaptic axons is not random but rather relatively uniform both in vitro and in vivo. Intriguingly, whereas the positions of each mitochondrial spot changed over time, the overall distribution remained uniform. In addition, local inactivation of mitochondria inhibited the translocation of mitochondrial spots in adjacent axonal regions, suggesting that functional mitochondria enhance the motility of neighboring mitochondria. Furthermore, we showed that the ATP concentration was relatively high around mitochondria, and treating axons with phosphocreatine, which supplies ATP, reduced the immobile mitochondria induced by local mitochondrial inhibition. These observations indicate that intermitochondrial interactions, mediated by ATP signaling, control the uniform distribution of axonal mitochondria. The present study reveals a novel cellular system that collectively regulates stationary mitochondria in axons.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jie-Yuan Jin ◽  
Dan-Yu Liu ◽  
Zi-Jun Jiao ◽  
Yi Dong ◽  
Jie Li ◽  
...  

Introduction. Distal arthrogryposis type 5D (DA5D) is an autosomal recessive disease. The clinical symptoms include contractures of the joints of limbs, especially camptodactyly of the hands and/or feet, unilateral ptosis, a round-shaped face, arched eyebrows, and micrognathia, without ophthalmoplegia. ECEL1 is a DA5D causative gene that encodes a membrane-bound metalloprotease. ECEL1 plays important roles in the final axonal arborization of motor nerves in limb skeletal muscles and neuromuscular junction formation during prenatal development. Methods. A DA5D family with webbing of the elbows and fingers was recruited. We performed whole-exome sequencing (WES) and filtered mutations by disease-causing genes of arthrogryposis multiplex congenita (AMC). Mutational analysis and cosegregation confirmation were then performed. Results. We identified novel compound heterozygous mutations of ECEL1 (NM_004826: c.69C>A, p.C23∗ and c.1810G>A, p.G604R) in the proband. Conclusions. We detected causative mutations in a DA5D family, expanding the spectrum of known ECEL1 mutations and contributing to the clinical diagnosis of DA5D.


2019 ◽  
Author(s):  
Willemieke M. Kouwenhoven ◽  
Guillaume Fortin ◽  
Anna-Maija Penttinen ◽  
Clélia Florence ◽  
Benoît Delignat-Lavaud ◽  
...  

ABSTRACTIn Parkinson’s disease, the most vulnerable neurons are found in the ventral tier of the substantia nigra (SN), while the adjacent dopamine (DA) neurons of the ventral tegmental area (VTA) are mostly spared. Although a significant subset of adult VTA DA neurons expresses Vglut2, a vesicular glutamate transporter, and release glutamate as a second neurotransmitter in the striatum, only very few adult SN DA neurons have this capacity. Previous work has demonstrated that lesions created by neurotoxins such as MPTP and 6-hydroxydopamine (6-OHDA) can upregulate the expression of Vglut2 in surviving DA neurons. Currently, the molecular mechanisms explaining the plasticity of Vglut2 expression in DA neurons are unknown, as are the physiological consequences for DA neuron function and survival. Here we aimed to characterize the developmental expression pattern of Vglut2 in DA neurons and the role of this transporter in post-lesional plasticity in these neurons. Using an intersectional genetic lineage-mapping approach, based on Vglut2-Cre and TH-Flpo drivers, we first found that more than 98% of DA neurons expressed Vglut2 at some point in their embryonic development. Expression of this transporter was detectable in most DA neurons until E11.5 and was found to be localized in developing axons. Moderate enhancement of VGLUT2 expression in primary DA neurons caused an increase in axonal arborization length. Compatible with a developmental role, constitutive deletion of Vglut2 caused a regional defect in TH-innervation of the dorsal striatum in E18.5 embryos. Moreover, using an in vitro neurotoxin model, we demonstrate that Vglut2 expression can be upregulated in post-lesional DA neurons by 2.5-fold, arguing that the developmental expression of Vglut2 in DA neurons can be reactivated at postnatal stages and contribute to post-lesional plasticity of dopaminergic axons. In support of this hypothesis, we find fewer mesostriatial dopaminergic projections in the striatum of conditional Vglut2 KO mice 7 weeks after a neurotoxic lesion, compared to control animals. Thus, we propose here that one of the functions of Vglut2 in adult DA neurons is to promote post-lesional recovery of meso-striatal axons.


PLoS Genetics ◽  
2019 ◽  
Vol 15 (8) ◽  
pp. e1008352 ◽  
Author(s):  
Nicolas Giguère ◽  
Benoît Delignat-Lavaud ◽  
Freja Herborg ◽  
Aurore Voisin ◽  
Yuan Li ◽  
...  

2017 ◽  
Author(s):  
Xiaojun Wang ◽  
Jason Tucciarone ◽  
Siqi Jiang ◽  
Fangfang Yin ◽  
Bor-shuen Wang ◽  
...  

AbstractParsing diverse nerve cells into biological types is necessary for understanding neural circuit organization. Morphology is an intuitive criterion for neuronal classification and a proxy of connectivity, but morphological diversity and variability often preclude resolving the granularity of discrete cell groups from population continuum. Combining genetic labeling with high-resolution, large volume light microscopy, we established a platform of genetic single neuron anatomy that resolves, registers and quantifies complete neuron morphologies in the mouse brain. We discovered that cortical axo-axonic cells (AACs), a cardinal GABAergic interneuron type that controls pyramidal neuron (PyN) spiking at axon initial segment, consist of multiple subtypes distinguished by laminar position, dendritic and axonal arborization patterns. Whereas the laminar arrangements of AAC dendrites reflect differential recruitment by input streams, the laminar distribution and local geometry of AAC axons enable differential innervation of PyN ensembles. Therefore, interneuron types likely consist of fine-grained subtypes with distinct input-output connectivity patterns.


Sign in / Sign up

Export Citation Format

Share Document