Heat dissipation of underlying multilayered graphene layers grown on Cu–Ni alloys for high-performance interconnects

2022 ◽  
pp. 152506
Author(s):  
Min Hee Jeong ◽  
Hokyun Rho ◽  
Mina Park ◽  
Dong Yeong Kim ◽  
Hyunjung Lee ◽  
...  
Author(s):  
Nico Setiawan Effendi ◽  
Kyoung Joon Kim

A computational study is conducted to explore thermal performances of natural convection hybrid fin heat sinks (HF HSs). The proposed HF HSs are a hollow hybrid fin heat sink (HHF HS) and a solid hybrid fin heat sink (SHF HS). Parametric effects such as a fin spacing, an internal channel diameter, a heat dissipation on the performance of HF HSs are investigated by CFD analysis. Study results show that the thermal resistance of the HS increases while the mass-multiplied thermal resistance of the HS decreases associated with the increase of the channel diameter. The results also shows the thermal resistance of the SHF HS is 13% smaller, and the mass-multiplied thermal resistance of the HHF HS is 32% smaller compared with the pin fin heat sink (PF HS). These interesting results are mainly due to integrated effects of the mass-reduction, the surface area enhancement, and the heat pumping via the internal channel. Such better performances of HF HSs show the feasibility of alternatives to the conventional PF HS especially for passive cooling of LED lighting modules.


Author(s):  
Jimmy Chuang ◽  
Jin Yang ◽  
David Shia ◽  
Y L Li

Abstract In order to meet increasing performance demand from high-performance computing (HPC) and edge computing, thermal design power (TDP) of CPU and GPU needs to increase. This creates thermal challenge to corresponding electronic packages with respect to heat dissipation. In order to address this challenge, two-phase immersion cooling is gaining attention as its primary mode of heat of removal is via liquid-to-vapor phase change, which can occur at relatively low and constant temperatures. In this paper, integrated heat spreader (IHS) with boiling enhancement features is proposed. 3D metal printing and metal injection molding (MIM) are the two approaches used to manufacture the new IHS. The resultant IHS with enhancement features are used to build test vehicles (TV) by following standard electronic package assembly process. Experimental results demonstrated that boiling enhanced TVs improved two-phase immersion cooling capability by over 50% as compared to baseline TV without boiling enhanced features.


2021 ◽  
Author(s):  
Guilin Liu ◽  
Jing Liu

Abstract The increasingly high power density of today's electronic devices requires the cooling techniques to produce highly effective heat dissipation performance with as little sacrifice as possible to the system compactness. Among the currently available thermal management schemes, the convective liquid metal cooling provides considerably high performance due to their unique thermal properties. This paper firstly reviews the studies on convective cooling using low-melting-point metals published in the past few decades. A group of equations for the thermophysical properties of In-Ga-Sn eutectic alloy is then documented by rigorous literature examination, following by a section of correlations for the heat transfer and flow resistance calculation to partially facilitate the designing work at the current stage. The urgent need to investigate the heat transfer and flow resistance of forced convection of low-melting-point metals in small/mini-channels, typical in compact electronic devices, is carefully argued. Some special aspects pertaining to the practical application of this cooling technique, including the entrance effect, mixed convection, and compact liquid metal heat exchanger design, are also discussed. Finally, future challenges and prospects are outlined.


2021 ◽  
Vol 21 (12) ◽  
pp. 5960-5964
Author(s):  
Kwon Jai Lee ◽  
Jee Young Oh ◽  
Kyong Nam Kim

With the rapid development of the electronics industry, high-density electronic devices and component mounting have gained popularity. Because of the heat generated from these devices, efficiency of the electronic parts is significantly lowered and life of various electronic devices is considerably shortened. Therefore, it is essential to efficiently dissipate the heat generated from the device to extend product life and ensure high efficiency of electronic components. This study evaluated how residual stress is impacted by the thickness of the deposited copper film, which is widely used as a heat dissipation material, and the number of graphene layers. The results confirmed that the residual stress decreased with increasing thickness. Moreover, the residual stress changed based on the transfer area of graphene, which had an elastic modulus eight times that of copper, indicating that the residual stress of the deposited copper film can be controlled.


2019 ◽  
Vol 150 ◽  
pp. 128-137 ◽  
Author(s):  
Bo Lin ◽  
Wenxin Zhang ◽  
Xiaoping Zheng ◽  
Yuliang Zhao ◽  
Zhaohui Lou ◽  
...  

2008 ◽  
Author(s):  
Edward Palmer ◽  
Rakesh Mishra ◽  
John Fieldhouse ◽  
Jonathan Layfield

1991 ◽  
Vol 113 (3) ◽  
pp. 226-232 ◽  
Author(s):  
Ben Nagaraj ◽  
Mali Mahalingam

Flip Tape Automated Bond (FTAB) interconnect is one of the leading candidates for device to substrate interconnection in a high performance Multi-Chip Module (MCM). The TAB interconnect becomes a structural member in the MCM assembly, bearing both “mechanical” and “thermal” loads. Further, to accomplish high thermal performance in the assembly, physical contact to the device may be made under substantial contact pressures. The device may be supported by elastic structures to redistribute the interconnect forces. Finite Element Methods (FEM) are used to analyze the structural behavior of TAB interconnects under (i) the applied mechanical load to the device and (ii) the thermal loads due to the heat dissipation in the device. Variation of the force components on the TAB interconnects and the maximum failure criterion based on the stresses in the interconnects are reported. Effect of the support area and the modulus of the supporting element on the interconnects are discussed. Generic design guidelines are presented for flip TAB interconnect based MCM assembly.


Author(s):  
Gamal Refai-Ahmed

The past few decades have seen a number of countries around the world emerge as a growing market for high performance computers. This present study examines, in more detail, how socio-economic influences are shaping the demand function and how some computing landscapes are changing as a consequence. This study is addressing one of the key initiatives to enable 50 percent of the world’s population with access to the World Wide Web. Furthermore, this investigation is addressing the challenges for electronics packaging Engineers and Researchers. Therefore, the rational of the developed technology based on the understanding target market and usages will be given. The impact of addressing the heat dissipation and managing the use of the raw materials of the intended products are discussed. In addition, how the electronics packaging engineers can focus on developing affordable innovative technology. Finally, the impact of all of the above is examined in developing the cost effective solution from a global point of view.


NANO ◽  
2019 ◽  
Vol 14 (04) ◽  
pp. 1950049 ◽  
Author(s):  
Jingjing Lin ◽  
Song Yan ◽  
Xiaojie Zhang ◽  
Yueran Liu ◽  
Jun Lian ◽  
...  

Holey Fe-Anderson-type polyoxometalate/polyaniline/graphene (PPG) hybrid materials were first prepared by anchoring Anderson-type polyoxometalates [FeMo6O[Formula: see text]H6][Formula: see text] (FeMo[Formula: see text] onto graphene modified with polyaniline via a facile hydrothermal treatment. The as-prepared materials exhibited an excellent electrochemical performance with a high specific capacitance of 1366 F g[Formula: see text] at 1 A g[Formula: see text] and outstanding cycling stability (97.6% capacitance retention after 5000 cycle times). The uptake of polyaniline/FeMo6 nanoparticles on graphene not only provided the pseudocapacitance but also weakened the aggregation between the graphene layers, resulting in a higher surface area compared with pure graphene. In addition, the AC//PPG-15 asymmetric supercapacitor device showed a high energy density of 24.65[Formula: see text]W h kg[Formula: see text] at a low power density of 326.25[Formula: see text]W kg[Formula: see text] and good cycling stability (94.82% capacitance retention after 5000 cycles). Hence, the as-prepared PPG hybrid materials in this work possess tremendous potential as electrodes for high-performance supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document