aliivibrio salmonicida
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12030
Author(s):  
Sergey Bazhenov ◽  
Olga Melkina ◽  
Vadim Fomin ◽  
Ekaterina Scheglova ◽  
Pavel Krasnik ◽  
...  

LitR is a master-regulator of transcription in the ainS/R and luxS/PQ quorum sensing (QS) systems of bacteria from Vibrio and Aliivibrio genera. Here, we for the first time directly investigated the influence of LitR on gene expression in the luxI/R QS system of psychrophilic bacteria Aliivibrio logei. Investigated promoters were fused with Photorhabdus luminescens luxCDABE reporter genes cassette in a heterological system of Escherichia coli cells, litR A. logei was introduced into the cells under control of Plac promoter. LitR has been shown to upregulate genes of autoinducer synthase (luxI), luciferase and reductase (luxCDABE), and this effect doesn’t depend on presence of luxR gene. To a much lesser degree, LitR induces luxR1, but not the luxR2 — the main luxI/R regulator. Enhanced litR expression leads to an increase in a LuxI-autoinducer synthesis and a subsequent LuxR-mediated activation of the luxI/R QS system. Effect of LitR on luxI transcription depends on lux-box sequence in luxI promoter even in absence of luxR (lux-box is binding site of LuxR). The last finding indicates a direct interaction of LitR with the promoter in the lux-box region. Investigation of the effect of LitR A. logei on luxI/R QS systems of mesophilic Aliivibrio fischeri and psychrophilic Aliivibrio salmonicida showed direct luxR-independent upregulation of luxI and luxCDABE genes. To a lesser degree, it induces luxR A. fischeri and luxR1 A. salmonicida. Therefore, we assume that the main role of LitR in cross-interaction of these three QS systems is stimulating the expression of luxI.


BioMetals ◽  
2020 ◽  
Vol 33 (4-5) ◽  
pp. 169-185
Author(s):  
Kristel Berg ◽  
Hege Lynum Pedersen ◽  
Ingar Leiros

Abstract Iron is an essential nutrient for bacteria, however its propensity to form toxic hydroxyl radicals at high intracellular concentrations, requires its acquisition to be tightly regulated. Ferric uptake regulator (Fur) is a metal-dependent DNA-binding protein that acts as a transcriptional regulator in maintaining iron metabolism in bacteria and is a highly interesting target in the design of new antibacterial drugs. Fur mutants have been shown to exhibit decreased virulence in infection models. The protein interacts specifically with DNA at binding sites designated as ‘Fur boxes’. In the present study, we have investigated the interaction between Fur from the fish pathogen Aliivibrio salmonicida (AsFur) and its target DNA using a combination of biochemical and in silico methods. A series of target DNA oligomers were designed based on analyses of Fur boxes from other species, and affinities assessed using electrophoretic mobility shift assay. Binding strengths were interpreted in the context of homology models of AsFur to gain molecular-level insight into binding specificity.


2018 ◽  
Vol 124 ◽  
pp. 322-331 ◽  
Author(s):  
Simen Foyn Nørstebø ◽  
Leif Lotherington ◽  
Marius Landsverk ◽  
Ane Mohn Bjelland ◽  
Henning Sørum

Sign in / Sign up

Export Citation Format

Share Document