scholarly journals Biochemical characterization of ferric uptake regulator (Fur) from Aliivibrio salmonicida. Mapping the DNA sequence specificity through binding studies and structural modelling

BioMetals ◽  
2020 ◽  
Vol 33 (4-5) ◽  
pp. 169-185
Author(s):  
Kristel Berg ◽  
Hege Lynum Pedersen ◽  
Ingar Leiros

Abstract Iron is an essential nutrient for bacteria, however its propensity to form toxic hydroxyl radicals at high intracellular concentrations, requires its acquisition to be tightly regulated. Ferric uptake regulator (Fur) is a metal-dependent DNA-binding protein that acts as a transcriptional regulator in maintaining iron metabolism in bacteria and is a highly interesting target in the design of new antibacterial drugs. Fur mutants have been shown to exhibit decreased virulence in infection models. The protein interacts specifically with DNA at binding sites designated as ‘Fur boxes’. In the present study, we have investigated the interaction between Fur from the fish pathogen Aliivibrio salmonicida (AsFur) and its target DNA using a combination of biochemical and in silico methods. A series of target DNA oligomers were designed based on analyses of Fur boxes from other species, and affinities assessed using electrophoretic mobility shift assay. Binding strengths were interpreted in the context of homology models of AsFur to gain molecular-level insight into binding specificity.

2010 ◽  
Vol 30 (5) ◽  
pp. 331-340 ◽  
Author(s):  
Shahper N. Khan ◽  
Mohd Danishuddin ◽  
Asad U. Khan

MTX (mitoxantrone) is perhaps the most promising drug used in the treatment of various malignancies. Comprehensive literature on the therapeutics has indicated it to be the least toxic in its class, although its mechanism of action is still not well defined. In the present study, we have evaluated the associated binding interactions of MTX with naked DNA. The mechanism of MTX binding with DNA was elucidated by steady-state fluorescence and a static-type quenching mechanism is suggested for this interaction. Thermodynamic parameters from van 't Hoff plots showed that the interaction of these drugs with DNA is an entropically driven phenomenon. The binding mode was expounded by attenuance measurements and competitive binding of a known intercalator. Sequence specificity of these drug–DNA complexes was analysed by FTIR (Fourier-transform infrared) spectroscopy and molecular modelling studies. CD spectroscopy and the plasmid nicking assay showed that the binding of this drug with DNA results in structural and conformational perturbations. EMSA (electrophoretic mobility-shift assay) results showed that these drug–DNA complexes prevent the binding of octamer TF (transcription factor) to DNA. In summary, the study implicates MTX-induced conformational instability and transcription inhibition on DNA binding.


1987 ◽  
Vol 7 (12) ◽  
pp. 4522-4534 ◽  
Author(s):  
R Ng ◽  
J Carbon

Centromeres on chromosomes in the yeast Saccharomyces cerevisiae contain approximately 140 base pairs (bp) of DNA. The functional centromere (CEN) region contains three important sequence elements (I, PuTCACPuTG; II, 78 to 86 bp of high-AT DNA; and III, a conserved 25-bp sequence with internal bilateral symmetry). Various point mutations or deletions in the element III region have a profound effect on CEN function in vivo, indicating that this DNA region is a key protein-binding site. This has been confirmed by the use of two in vitro assays to detect binding of yeast proteins to DNA fragments containing wild-type or mutationally altered CEN3 sequences. An exonuclease III protection assay was used to demonstrate specific binding of proteins to the element III region of CEN3. In addition, a gel DNA fragment mobility shift assay was used to characterize the binding reaction parameters. Sequence element III mutations that inactivate CEN function in vivo also prevent binding of proteins in the in vitro assays. The mobility shift assay indicates that double-stranded DNAs containing sequence element III efficiently bind proteins in the absence of sequence elements I and II, although the latter sequences are essential for optimal CEN function in vivo.


2020 ◽  
pp. jbc.RA120.015824
Author(s):  
Manisha Yadav ◽  
Ravi Shankar Singh ◽  
Daniel Hogan ◽  
Venkatasubramanian Vidhyasagar ◽  
Shizhuo Yang ◽  
...  

The K-homology (KH) domain is a nucleic acid binding domain present in many proteins. Recently we found that the DEAD-box helicase DDX43 contains a KH domain in its N-terminus; however, its function remains unknown. Here, we purified recombinant DDX43 KH domain protein and found that it prefers binding single-stranded (ss)DNA and ssRNA. Electrophoretic mobility shift assay (EMSA) and nuclear magnetic resonance (NMR) revealed that the KH domain favors pyrimidines over purines. Mutational analysis showed that the GXXG-loop in the KH domain is involved in pyrimidine binding. Moreover, we found that an alanine residue adjacent to the GXXG loop is critical for binding. SELEX (systematic evolution of ligands by exponential enrichment), chromatin immunoprecipitation (ChIP)-seq, and crosslinking immunoprecipitation (CLIP)-seq showed that the KH domain binds C/T rich DNA and U rich RNA. Bioinformatics analysis suggested that the KH domain prefers to bind promoters. Using 15N-HSQC NMR, the optimal binding sequence was identified as TTGT. Finally, we found that the full-length DDX43 helicase prefers DNA or RNA substrates with TTGT or UUGU single strand tails, and that the KH domain is critically important for sequence specificity and unwinding processivity. Collectively, our results demonstrated that the KH domain facilitates the substrate specificity and processivity of the DDX43 helicase.


1998 ◽  
Vol 64 (7) ◽  
pp. 2710-2715 ◽  
Author(s):  
Jonathan J. Dennis ◽  
Gerben J. Zylstra

A series of modular mini-transposon derivatives which permit the rapid cloning and mapping of the DNA flanking the minitransposon’s site of insertion has been developed. The basic plasposon, named TnMod, consists of the Tn5 inverted repeats, a conditional origin of replication, rare restriction endonuclease multiple cloning sites, and exchangeable antibiotic resistance cassettes. The broad host range and low target DNA sequence specificity of the Tn5 transposase, in combination with the flexibility afforded by the modular arrangement of TnMod, result in a versatile tool for the mapping of insertional mutations and the rapid recovery of clones from gram-negative bacteria.


1987 ◽  
Vol 7 (12) ◽  
pp. 4522-4534
Author(s):  
R Ng ◽  
J Carbon

Centromeres on chromosomes in the yeast Saccharomyces cerevisiae contain approximately 140 base pairs (bp) of DNA. The functional centromere (CEN) region contains three important sequence elements (I, PuTCACPuTG; II, 78 to 86 bp of high-AT DNA; and III, a conserved 25-bp sequence with internal bilateral symmetry). Various point mutations or deletions in the element III region have a profound effect on CEN function in vivo, indicating that this DNA region is a key protein-binding site. This has been confirmed by the use of two in vitro assays to detect binding of yeast proteins to DNA fragments containing wild-type or mutationally altered CEN3 sequences. An exonuclease III protection assay was used to demonstrate specific binding of proteins to the element III region of CEN3. In addition, a gel DNA fragment mobility shift assay was used to characterize the binding reaction parameters. Sequence element III mutations that inactivate CEN function in vivo also prevent binding of proteins in the in vitro assays. The mobility shift assay indicates that double-stranded DNAs containing sequence element III efficiently bind proteins in the absence of sequence elements I and II, although the latter sequences are essential for optimal CEN function in vivo.


2004 ◽  
Vol 279 (44) ◽  
pp. 46096-46103 ◽  
Author(s):  
Jixun Dai ◽  
Chandanamalie Punchihewa ◽  
Prakash Mistry ◽  
Aik Teong Ooi ◽  
Danzhou Yang

The new bisphenazine anticancer drug MLN944 is a novel cytotoxic agent with exceptional anti-tumor activity against a range of human and murine tumor models both invitroand invivo. MLN944 has recently entered Phase I clinical trials. Despite the structural similarity with its parent monophenazine carboxamide and acridine carboxamide anticancer compounds, MLN944 appears to work by a distinct mechanism of inhibiting DNA transcription rather than the expected mechanism of topoisomerase I and II inhibition. Here we present the first NMR structure of MLN944 complexed with d(ATGCAT)2DNA duplex, demonstrating a novel binding mode in which the two phenazine rings bis-intercalate at the 5′-TpG site, with the carboxamide amino linker lying in the major groove of DNA. The MLN944 molecule adopts a significantly unexpected conformation and side chain orientation in the DNA complex, with the N10 on the phenazine ring protonated at pH 7. The phenazine chromophore of MLN944 is very well stacked with the flanking DNA base pairs using the parallel base-stacking intercalation binding mode. The DNA sequence specificity and the groove recognition of MLN944 binding is determined by several site-specific hydrogen bond interactions with the central G:C base pair as well as the favorable stacking interactions with the 5′-flanking thymine. The specific binding site of MLN944 is known to be recognized by a number of important transcription factors. Our electrophoretic gel mobility shift assay results demonstrated that the c-Jun DNA binding to the AP-1 site is significantly inhibited by MLN944 in a dose-dependent manner. Thus, the exceptional biological activity of MLN944 may be due to its novel DNA binding mode leading to a unique mechanism of action.


2002 ◽  
Vol 22 (22) ◽  
pp. 7790-7801 ◽  
Author(s):  
Patrick C. Swanson

ABSTRACT Initiation of V(D)J recombination involves the synapsis and cleavage of a 12/23 pair of recombination signal sequences by RAG-1 and RAG-2. Ubiquitous nonspecific DNA-bending factors of the HMG box family, such as HMG-1, are known to assist in these processes. After cleavage, the RAG proteins remain bound to the cut signal ends and, at least in vitro, support the integration of these ends into unrelated target DNA via a transposition-like mechanism. To investigate whether the protein complex supporting synapsis, cleavage, and transposition of V(D)J recombination signals utilized the same complement of RAG and HMG proteins, I compared the RAG protein stoichiometries and activities of discrete protein-DNA complexes assembled on intact, prenicked, or precleaved recombination signal sequence (RSS) substrates in the absence and presence of HMG-1. In the absence of HMG-1, I found that two discrete RAG-1/RAG-2 complexes are detected by mobility shift assay on all RSS substrates tested. Both contain dimeric RAG-1 and either one or two RAG-2 subunits. The addition of HMG-1 supershifts both complexes without altering the RAG protein stoichiometry. I find that 12/23-regulated recombination signal synapsis and cleavage are only supported in a protein-DNA complex containing HMG-1 and a RAG-1/RAG-2 tetramer. Interestingly, the RAG-1/RAG-2 tetramer also supports transposition, but HMG-1 is dispensable for its activity.


2009 ◽  
Vol 192 (5) ◽  
pp. 1221-1230 ◽  
Author(s):  
Teruo Tanaka

ABSTRACT Bacillus subtilis plasmid pBET131 is a derivative of pLS32, which was isolated from a natto strain of Bacillus subtilis. The DNA region in pBET131 that confers segregational stability contains an operon consisting of three genes, of which alfA, encoding an actin-like ATPase, and alfB are essential for plasmid stability. In this work, the alfB gene product and its target DNA region were studied in detail. Transcription of the alf operon initiated from a σA-type promoter was repressed by the alfB gene product. Overproduction of AlfA was inhibitory to cell growth, suggesting that the repression of the alf operon by AlfB is important for maintaining appropriate levels of AlfA. An electrophoretic mobility shift assay and footprinting analysis with purified His-tagged AlfB showed that it bound to a DNA region containing three tandem repeats of 8-bp AT-rich sequence (here designated parN), which partially overlaps the −35 sequence of the promoter. A sequence alteration in the first or third repeat did not affect the AlfB binding and plasmid stability, whereas that in the second repeat resulted in inhibition of these phenomena. The repression of alfA-lacZ expression was observed in the constructs carrying a mutation in either the first or third repeat, but not in the second repeat, indicating a correlation between plasmid stability, AlfB binding, and repression. It was also demonstrated by the yeast two-hybrid system that AlfA and AlfB interact with each other and among themselves. From these results, it was concluded that AlfB participates in partitioning pBET131 by forming a complex with AlfA and parN, the mode of which is typified by the type II partition mechanism.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Peng Zhang ◽  
Florian D. Hastert ◽  
Anne K. Ludwig ◽  
Kai Breitwieser ◽  
Maria Hofstätter ◽  
...  

Abstract DNA base modifications and mutations are observed in all genomes throughout the kingdoms of life. Proteins involved in their establishment and removal were shown to use a base flipping mechanism to access their substrates. To better understand how proteins flip DNA bases to modify or remove them, we optimized and developed a pipeline of methods to step-by-step detect the process starting with protein–DNA interaction, base flipping itself and the ensuing DNA base modification or excision. As methylcytosine is the best-studied DNA modification, here we focus on the process of writing, modifying and reading this DNA base. Using multicolor electrophoretic mobility shift assays, we show that the methylcytosine modifier Tet1 exhibits little DNA sequence specificity with only a slight preference for methylated CpG containing DNA. A combination of chloroacetaldehyde treatment and high-resolution melting temperature analysis allowed us to detect base flipping induced by the methylcytosine modifier Tet1 as well as the methylcytosine writer M.HpaII. Finally, we show that high-resolution melting temperature analysis can be used to detect the activity of glycosylases, methyltransferases and dioxigenases on DNA substrates. Taken together, this DNA base flipping analytical pipeline (BaFAP) provide a complete toolbox for the fast and sensitive analysis of proteins that bind, flip and modify or excise DNA bases.


Author(s):  
Stephen D. Jett

The electrophoresis gel mobility shift assay is a popular method for the study of protein-nucleic acid interactions. The binding of proteins to DNA is characterized by a reduction in the electrophoretic mobility of the nucleic acid. Binding affinity, stoichiometry, and kinetics can be obtained from such assays; however, it is often desirable to image the various species in the gel bands using TEM. Present methods for isolation of nucleoproteins from gel bands are inefficient and often destroy the native structure of the complexes. We have developed a technique, called “snapshot blotting,” by which nucleic acids and nucleoprotein complexes in electrophoresis gels can be electrophoretically transferred directly onto carbon-coated grids for TEM imaging.


Sign in / Sign up

Export Citation Format

Share Document