scholarly journals A synchrotron computed tomography dataset for validation of longitudinal tensile failure models based on fibre break and cluster development

Data in Brief ◽  
2021 ◽  
pp. 107590
Author(s):  
C. Breite ◽  
A. Melnikov ◽  
A. Turon ◽  
A.B. de Morais ◽  
C. Le Bourlot ◽  
...  
2022 ◽  
pp. 002199832110619
Author(s):  
Sebastian Rosini ◽  
Mark N Mavrogordato ◽  
Tsuneo Takano ◽  
Naoki Sugiura ◽  
S Mark Spearing ◽  
...  

In situ synchrotron radiation computed tomography (SRCT) was used to compare the fibre damage progression in five configurations of (902/02)s carbon-epoxy coupons loaded to failure. The effects of different sizing types, surface treatments and fibre diameters on the macroscopic properties, for example, ultimate tensile strength (UTS), and on the damage accumulation at a microscopic scale, for example, fibre break accumulation, were assessed. A semi-automated approach was adopted to process the large amount of data obtained from the SRCT scans and further method applicability areas can be envisaged. Single fibre break accumulation was seen to be influenced by the fibre type, while the formation of interacting fibre break groups by the surface treatment and the sizing type. For the materials presented, it can be suggested that an increased defect tolerance can be obtained by moving from stronger to weaker fibre-matrix adhesion, with sub-critical multiplet behaviour emerging as independent of the average UTS value.


2021 ◽  
Vol 202 ◽  
pp. 108555
Author(s):  
C. Breite ◽  
A. Melnikov ◽  
A. Turon ◽  
A.B. de Morais ◽  
F. Otero ◽  
...  

Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


Author(s):  
F. I. Grace

An interest in NiTi alloys with near stoichiometric composition (55 NiTi) has intensified since they were found to exhibit a unique mechanical shape memory effect at the Naval Ordnance Laboratory some twelve years ago (thus refered to as NITINOL alloys). Since then, the microstructural mechanisms associated with the shape memory effect have been investigated and several interesting engineering applications have appeared.The shape memory effect implies that the alloy deformed from an initial shape will spontaneously return to that initial state upon heating. This behavior is reported to be related to a diffusionless shear transformation which takes place between similar but slightly different CsCl type structures.


2001 ◽  
Vol 120 (5) ◽  
pp. A3-A3
Author(s):  
C HASSAN ◽  
P CERRO ◽  
A ZULLO ◽  
C SPINA ◽  
S MORINI

Sign in / Sign up

Export Citation Format

Share Document