A Steady Transonic Linear Cascade for True Scale Cooling Measurements

2021 ◽  
Author(s):  
Jeremy Zuccarello ◽  
David Saltzman ◽  
Shane Haydt ◽  
Stephen Lynch ◽  
Christopher Whitfield
Keyword(s):  
Author(s):  
Marcel Escudier

This chapter is concerned primarily with the flow of a compressible fluid through stationary and moving blading, for the most part using the analysis introduced in Chapter 11. The principles of dimensional analysis are applied to determine the appropriate non-dimensional parameters to characterise the performance of a turbomachine. The analysis of incompressible flow through a linear cascade of aerofoil-like blades is followed by the analysis of compressible flow. Velocity triangles for flow relative to blades, and Euler’s turbomachinery equation, are introduced to analyse flow through a rotor. The concepts introduced are applied to the analysis of an axial-turbomachine stage comprising a stator and a rotor, which applies to either a compressor or a turbine.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Vital Kumar Yadav Pillala ◽  
B. V. S. S. S. Prasad ◽  
N. Sitaram ◽  
M. Mahendran ◽  
Debasish Biswas ◽  
...  

AbstractThe paper presents details of a unique experimental facility along with necessary accessories and instrumentation for testing steam turbine cascade blades in wet and nucleating steam. A steam turbine rotor tip cascade is chosen for flow investigations. Cascade inlet flow measurements show uniform conditions with dry air and steam and dry air mixture of different ratios. Exit flow surveys indicate that excellent flow periodicity is obtained. Blade surface static pressure and exit total pressure distributions are also presented with dry air and with steam and dry air mixture of different ratios as the working medium at an exit Mach number of 0.52.


Author(s):  
Jeffrey Gibson ◽  
Karen Thole ◽  
Jesse Christophel ◽  
Curtis Memory

Rim seals in the turbine section of gas turbine engines aim to reduce the amount of purge air required to prevent the ingress of hot mainstream gas into the under-platform space. A stationary, linear cascade was designed, built, and benchmarked to study the effect of the interaction between the pressure fields from an upstream vane row and downstream blade row on hot gas ingress for engine-realistic rim seal geometries. The pressure field of the downstream blade row was modeled using a bluff body designed to produce the pressure distortion of a moving blade. Sealing effectiveness data for the baseline seal indicated that there was little to no ingress with a purge rate greater than 1% of the main gas path flow. Adiabatic endwall effectiveness data downstream in the trench between the vane and blade showed a high degree of mixing. Extending the seal feature associated with the vane endwall indicated better sealing than the baseline design. Steady computational predictions were found to overpredict the sealing effectiveness due to underpredicted mixing in the trench.


Author(s):  
Ken-ichi Funazaki ◽  
Nobuaki Tetsuka ◽  
Tadashi Tanuma

This paper reports on an experimental investigation of aerodynamic loss of a low-speed linear turbine cascade which is subjected to periodic wakes shed from moving bars of the wake generator. In this case, parameters related to the wake, such as wake passing frequency (wake Strouhal number) or wake turbulence characteristics, are varied to see how these wake-related parameters affect the local loss distribution or mass-averaged loss coefficient of the turbine cascade. Free-stream turbulence intensity is changed by use of a turbulence grid. In Part I of this paper a focus is placed on the measurements by use of a pneumatic five-hole yawmeter, which provides time-averaged stagnation pressure distributions downstream of the moving bars as well as of the turbine cascade. Spanwise distributions of wake-affected exit flow angle are also measured. From this study it is found that the wake passing greatly affects not only the profile loss but secondary loss of the linear cascade. Noticeable change in exit flow angle is also identified.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Maria Vera ◽  
Elena de la Rosa Blanco ◽  
Howard Hodson ◽  
Raul Vazquez

Research by de la Rosa Blanco et al. (“Influence of the State of the Inlet Endwall Boundary Layer on the Interaction Between the Pressure Surface Separation and the Endwall Flows,” Proc. Inst. Mech. Eng., Part A, 217, pp. 433–441) in a linear cascade of low pressure turbine (LPT) blades has shown that the position and strength of the vortices forming the endwall flows depend on the state of the inlet endwall boundary layer, i.e., whether it is laminar or turbulent. This determines, amongst other effects, the location where the inlet boundary layer rolls up into a passage vortex, the amount of fluid that is entrained into the passage vortex, and the interaction of the vortex with the pressure side separation bubble. As a consequence, the mass-averaged stagnation pressure loss and therefore the design of a LPT depend on the state of the inlet endwall boundary layer. Unfortunately, the state of the boundary layer along the hub and casing under realistic engine conditions is not known. The results presented in this paper are taken from hot-film measurements performed on the casing of the fourth stage of the nozzle guide vanes of the cold flow affordable near term low emission (ANTLE) LPT rig. These results are compared with those from a low speed linear cascade of similar LPT blades. In the four-stage LPT rig, a transitional boundary layer has been found on the platforms upstream of the leading edge of the blades. The boundary layer is more turbulent near the leading edge of the blade and for higher Reynolds numbers. Within the passage, for both the cold flow four-stage rig and the low speed linear cascade, the new inlet boundary layer formed behind the pressure leg of the horseshoe vortex is a transitional boundary layer. The transition process progresses from the pressure to the suction surface of the passage in the direction of the secondary flow.


Author(s):  
Wenfeng Zhao ◽  
Bin Jiang ◽  
Qun Zheng

Hub corner is the high-loss area in the blade passages of turbo machinery. It is well known that the flow separation and vortex development in this area affects directly not only the energy losses and efficiency, but also the stability of axial compressors. Linear compressor cascades with partial gaps and trailing gaps which can blow away the corner separation by the pressure difference between the suction surface and pressure surface are numerically simulated in this paper. A proposed linear cascade model with gaps has been built. The steady flow field in a linear cascade with different length gaps is studied by numerical simulation of RANS with SST turbulence model and γ-Reθ transition model focusing on the streamline structure between the corner separation vortex and the gap leakage vortex, especially the interaction of the two vertical vortex. When the length of trailing edge gaps is enough (in this paper, the optimal length of the gap is 30% chord), the corner vortex basically disappears completely. At the same time, the mode of flow field changes from the closed separation to the open separation.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1974
Author(s):  
Jiří Fürst ◽  
Martin Lasota ◽  
Jan Lepicovsky ◽  
Josef Musil ◽  
Jan Pech ◽  
...  

The paper presents a numerical and experimental investigation of the effect of incindence angle offset in a two-dimensional section of a flat blade cascade in a high-speed wind tunnel. The aim of the current work is tp determine the aerodynamic excitation forces and approximation of the unsteady blade-loading function using a quasi-stationary approach. The numerical simulations were performed with an in-house finite-volume code built on the top of the OpenFOAM framework. The experimental data were acquired for regimes corresponding to the numerical setup. The comparison of the computational and experimental results is shown for the static pressure distributions on three blades and upstream and downstream of the cascade. The plot of the aerodynamic moments acting on all five blades shows that the adjacent blades are significantly influenced by the angular offset of the middle blade.


2016 ◽  
Author(s):  
Theadora Tolkin ◽  
Lionel Christiaen

Skeletal muscles arise from diverse embryonic origins, yet converge on common regulatory programs involving muscle regulatory factor (MRF)-family genes. Here, we compare the molecular basis of myogenesis in two separate muscle groups in the simple chordate Ciona: the atrial and oral siphon muscles. Here, we describe the ontogeny of OSM progenitors and characterize the clonal origins of OSM founders to compare mechanisms of OSM specification to what has been established for ASM. We determined that, as is the case in the ASM, Ebf and Tbx1/10 are both expressed and function upstream of Mrf in the OSM founder cells. However, regulatory relationships between Tbx1/10, Ebf and Mrf differ between the OSM and ASM lineages: while Tbx1/10, Ebf and Mrf form a linear cascade in the ASM, Ebf and Tbx1/10 are expressed in the inverse temporal order and are required together in order to activate Mrf in the OSM founder cells.


Sign in / Sign up

Export Citation Format

Share Document