secretion stress
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

14
(FIVE YEARS 1)

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ane Quesada-Ganuza ◽  
Minia Antelo-Varela ◽  
Jeppe C. Mouritzen ◽  
Jürgen Bartel ◽  
Dörte Becher ◽  
...  

Abstract Background PrsA is an extracytoplasmic folding catalyst essential in Bacillus subtilis. Overexpression of the native PrsA from B. subtilis has repeatedly lead to increased amylase yields. Nevertheless, little is known about how the overexpression of heterologous PrsAs can affect amylase secretion. Results In this study, the final yield of five extracellular alpha-amylases was increased by heterologous PrsA co-expression up to 2.5 fold. The effect of the overexpression of heterologous PrsAs on alpha-amylase secretion is specific to the co-expressed alpha-amylase. Co-expression of a heterologous PrsA can significantly reduce the secretion stress response. Engineering of the B. licheniformis PrsA lead to a further increase in amylase secretion and reduced secretion stress. Conclusions In this work we show how heterologous PrsA overexpression can give a better result on heterologous amylase secretion than the native PrsA, and that PrsA homologs show a variety of specificity towards different alpha-amylases. We also demonstrate that on top of increasing amylase yield, a good PrsA–amylase pairing can lower the secretion stress response of B. subtilis. Finally, we present a new recombinant PrsA variant with increased performance in both supporting amylase secretion and lowering secretion stress.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Arryn Craney ◽  
Floyd E. Romesberg

ABSTRACT Protein secretion is essential, but how it is managed is poorly understood. In bacteria, most secreted proteins require release from the outer surface of the cytoplasmic membrane by type I signal peptidase (SPase), which cleaves the mature protein from its membrane-bound N-terminal signal peptide. As the first step that occurs outside the protected cytoplasmic environment and because insufficient activity can rapidly result in the toxic accumulation of preproteins, the activity of SPase is expected to be closely monitored and perhaps supplemented when insufficient. Indeed, we previously demonstrated that inhibition of SPase in Staphylococcus aureus results in derepression of the ayrRABC operon, which encodes an alternate mechanism to release proteins. However, in this case, the proteins are released with partially intact signal peptides, with the exception of IsaA, which is released with a virtually intact signal peptide. Here we show that mutation of AyrA [ayrA(R233K)] results in constitutive derepression of ayrRABC and that mutation of IsaA’s signal peptide [isaA(K2Q)] results in hyperderepression upon SPase inhibition, which also requires AyrA. Further studies demonstrate that the inducing signal for ayrRABC derepression is accumulation of a subset of preproteins with signal peptides that are stable toward further processing and that the signal is critically amplified by the K2Q mutation and relayed to AyrR by AyrA. These results elucidate the mechanism by which S. aureus monitors and responds to secretion stress. The presence of ayrRA in other bacteria suggests that it may represent a general strategy linking membrane stress to appropriate transcriptional responses. IMPORTANCE Bacteria interact with their environment by secreting proteins that perform a myriad of functions, and the final step is the release of the mature protein from the cell surface via the activity of type I signal peptidase (SPase). While the bacterial response to many stresses is understood in some detail, almost nothing is known about how cells respond to secretion stress, such as insufficient SPase activity, which would eventually result in cell death. We previously demonstrated that the inhibition of SPase in Staphylococcus aureus results in the derepression of the ayrRABC operon, which can functionally replace SPase, but which is normally repressed by AyrR. We now demonstrate that the inducing signal for derepression is accumulation of a subset of preproteins with signal peptides that are stable to further processing and that the signal is relayed to AyrR via AyrA. IMPORTANCE Bacteria interact with their environment by secreting proteins that perform a myriad of functions, and the final step is the release of the mature protein from the cell surface via the activity of type I signal peptidase (SPase). While the bacterial response to many stresses is understood in some detail, almost nothing is known about how cells respond to secretion stress, such as insufficient SPase activity, which would eventually result in cell death. We previously demonstrated that the inhibition of SPase in Staphylococcus aureus results in the derepression of the ayrRABC operon, which can functionally replace SPase, but which is normally repressed by AyrR. We now demonstrate that the inducing signal for derepression is accumulation of a subset of preproteins with signal peptides that are stable to further processing and that the signal is relayed to AyrR via AyrA.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0168112 ◽  
Author(s):  
Rebeca L. Vicente ◽  
Sonia Gullón ◽  
Silvia Marín ◽  
Rafael P. Mellado

2014 ◽  
Vol 37 (2) ◽  
pp. 333-341 ◽  
Author(s):  
Bin Zhou ◽  
Chao Wang ◽  
Bin Wang ◽  
Xiupeng Li ◽  
Jing Xiao ◽  
...  

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 1137 ◽  
Author(s):  
Tatiana Q Aguiar ◽  
Orquídea Ribeiro ◽  
Mikko Arvas ◽  
Marilyn G Wiebe ◽  
Merja Penttilä ◽  
...  

2012 ◽  
Vol 56 (10) ◽  
pp. 5054-5060 ◽  
Author(s):  
Peter A. Smith ◽  
Floyd E. Romesberg

ABSTRACTClinically approved antibiotics inhibit only a small number of conserved pathways that are essential for bacterial viability, and the physiological effects of inhibiting these pathways have been studied in great detail. Likewise, characterizing the effects of candidate antibiotics that function via novel mechanisms of action is critical for their development, which is of increasing importance due to the ever-growing problem of resistance. The arylomycins are a novel class of natural-product antibiotics that act via the inhibition of type I signal peptidase (SPase), which is an essential enzyme that functions as part of the general secretory pathway and is not the target of any clinically deployed antibiotic. Correspondingly, little is known about the effects of SPase inhibition or how bacteria may respond to mitigate the associated secretion stress. Using genetically sensitizedEscherichia coliandStaphylococcus aureusas model organisms, we examine the activity of arylomycin as a function of its concentration, bacterial cell density, target expression levels, and bacterial growth phase. The results reveal that the activity of the arylomycins results from an insufficient flux of proteins through the secretion pathway and the resulting mislocalization of proteins. Interestingly, this has profoundly different effects onE. coliandS. aureus. Finally, we examine the activity of arylomycin in combination with distinct classes of antibiotics and demonstrate that SPase inhibition results in synergistic sensitivity when combined with an aminoglycoside.


2012 ◽  
Vol 194 (7) ◽  
pp. 1800-1814 ◽  
Author(s):  
D. Noone ◽  
E. Botella ◽  
C. Butler ◽  
A. Hansen ◽  
I. Jende ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document