Solid-phase crystallization of ultra-thin amorphous Ge layers on insulators

Author(s):  
Ryo Oishi ◽  
Koji ASAKA ◽  
Bolotov Leonid ◽  
Noriyuki Uchida ◽  
Masashi Kurosawa ◽  
...  

Abstract A simple method to form ultra-thin (< 20 nm) semiconductor layers with a higher mobility on a 3D-structured insulating surface is required for next-generation nanoelectronics. We have investigated the solid-phase crystallization of amorphous Ge layers with thicknesses of 10−80 nm on insulators of SiO2 and Si3N4. We found that decreasing the Ge thickness reduces the grain size and increases the grain boundary barrier height, causing the carrier mobility degradation. We examined two methods, known effective to enhance the grain size in the thicker Ge (>100 nm). As a result, a relatively high Hall hole mobility (59 cm2/Vs) has been achieved with a 20-nm-thick polycrystalline Ge layer on Si3N4, which is the highest value among the previously reported works.

1989 ◽  
Vol 164 ◽  
Author(s):  
M.A. Hachicha ◽  
Etienne Bustarret

AbstractUndoped 500 nm-thick silicon layers with a crystalline fraction around 95% and an average grain size of 20 nm have been deposited at 350°C by 50 kHz triode PECVD in a H2/SiH4 mixture, in the presence of a magnetic field. Their room temperature (rt) dc conductivity μrt is 0.03 Δ−1cm−1 for a Hall mobility of 0.8 cm 2V−1s−1.The study by SIMS, infrared absorption, grazing angle x-ray diffraction and Raman scattering spectroscopies of the doped samples shows how the crystalline fraction and the grain size drop as the B2H6/SiH4 and PH3/SiH4 volumic ratios increase from 10 ppm to 1%.The rt dc conductivity reaches 2 Δ−1 cm−1 (Hall mobility: 15 cm2V−ls−1) for a solid phase density of 1019 cm−3 boron atoms, and 30 Δ−1cm−1 (Hall mobility: 55 cm2V−ls−1) at the maximum P incorporation of 8 × 1020cm−3.


AIP Advances ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 115126 ◽  
Author(s):  
Bai-Xiang Xu ◽  
Zi-Qi Zhou ◽  
Peter Keil ◽  
Till Frömling

2002 ◽  
Vol 727 ◽  
Author(s):  
Tae-Sik Yoon ◽  
Ki-Bum Kim

AbstractGe-rich Si1-XGeX nanocrystals are formed by the selective oxidation of Si during the dry oxidation of an amorphous Si0.7Ge0.3 layer. The oxidation kinetics of the alloy film shows the activation energies of linear and parabolic rate constants are about 1.35 and 1.02 eV, respectively, based on the model proposed by Deal and Grove. In addition, as a result of the selective oxidation of Si and Ge pile-up during the oxidation process, Ge-rich Si1-XGeX nanocrystals are formed with the size of 5.6 ± 1.7 nm and the spatial density of 3.6×1011/cm2 at 600°C. At higher temperature of 700 and 800°C, the size of nanocrystal is increased to about 20 nm. The nanocrystals formation by oxidation is thought to be due to higher oxidation rate at grain boundary than at bulk grain. Therefore, the dependence of size on temperature is explained with the grain size determined by solid phase crystallization of amorphous film, oxidation rate, and grain growth.


2019 ◽  
Vol 114 (11) ◽  
pp. 112110 ◽  
Author(s):  
K. Moto ◽  
N. Saitoh ◽  
N. Yoshizawa ◽  
T. Suemasu ◽  
K. Toko

2000 ◽  
Vol 15 (7) ◽  
pp. 1630-1634 ◽  
Author(s):  
A. Rodríguez ◽  
J. Olivares ◽  
C. González ◽  
J. Sangrador ◽  
T. Rodríguez ◽  
...  

The crystallization kinetics and film microstructure of poly-SiGe layers obtained by solid-phase crystallization of unimplanted and C- and F-implanted 100-nm-thick amorphous SiGe films deposited by low-pressure chemical vapor deposition on thermally oxidized Si wafers were studied. After crystallization, the F- and C-implanted SiGe films showed larger grain sizes, both in-plane and perpendicular to the surface of the sample, than the unimplanted SiGe films. Also, the (111) texture was strongly enhanced when compared to the unimplanted SiGe or Si films. The crystallized F-implanted SiGe samples showed the dendrite-shaped grains characteristic of solid-phase crystallized pure Si. The structure of the unimplanted SiGe and C-implanted SiGe samples consisted of a mixture of grains with well-defined contour and a small number of quasi-dendritic grains. These samples also showed a very low grain-size dispersion.


2010 ◽  
Vol 44-47 ◽  
pp. 4151-4153 ◽  
Author(s):  
Rui Min Jin ◽  
Ding Zhen Li ◽  
Lan Li Chen ◽  
Xiang Ju Han ◽  
Jing Xiao Lu

Amorphous silicon films prepared by PECVD on glass substrate has been crystallized by rapid thermal annealing (RTA) at the same temperature for different time. From X-ray diffraction (XRD) and scanning electronic microscope (SEM), it is found that the grain size is biggest crystallized at 720°C for 8 min, an average grain size of 28nm or so is obtained. The thin film is smoothly and perfect structure.


1983 ◽  
Vol 42 (3) ◽  
pp. 285-287 ◽  
Author(s):  
E. Poon ◽  
E. S. Yang ◽  
H. L. Evans ◽  
W. Hwang ◽  
R. M. Osgood

Sign in / Sign up

Export Citation Format

Share Document