collateral sulcus
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Sophie Stenger ◽  
Sebastian Bludau ◽  
Hartmut Mohlberg ◽  
Katrin Amunts

AbstractBrain areas at the parahippocampal gyrus of the temporal–occipital transition region are involved in different functions including processing visual–spatial information and episodic memory. Results of neuroimaging experiments have revealed a differentiated functional parcellation of this region, but its microstructural correlates are less well understood. Here we provide probability maps of four new cytoarchitectonic areas, Ph1, Ph2, Ph3 and CoS1 at the parahippocampal gyrus and collateral sulcus. Areas have been identified based on an observer-independent mapping of serial, cell-body stained histological sections of ten human postmortem brains. They have been registered to two standard reference spaces, and superimposed to capture intersubject variability. The comparison of the maps with functional imaging data illustrates the different involvement of the new areas in a variety of functions. Maps are available as part of Julich-Brain atlas and can be used as anatomical references for future studies to better understand relationships between structure and function of the caudal parahippocampal cortex.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cuicui Xu ◽  
Jessica E. Owen ◽  
Thorarinn Gislason ◽  
Bryndis Benediktsdottir ◽  
Stephen R. Robinson

AbstractCorpora amylacea (CoA) are spherical aggregates of glucose polymers and proteins within the periventricular, perivascular and subpial regions of the cerebral cortex and the hippocampal cornu ammonis (CA) subfields. The present study quantified the distribution of CoA in autopsied hippocampi of patients with obstructive sleep apnoea (OSA) using ethanolamine-induced fluorescence. CoA were observed in 29 of 30 patients (96.7%). They were most abundant in periventricular regions (wall of lateral ventricle, alveus, fimbria and CA4), rarely found in the CA3 and CA1, and undetectable in the CA2 or subiculum. A spatiotemporal sequence of CoA deposition was postulated, beginning in the fimbria and progressively spreading around the subpial layer until they extended medially to the wall of the lateral ventricle and laterally to the collateral sulcus. This ranked CoA sequence was positively correlated with CoA packing density (count and area fraction) and negatively correlated with CoA minimum diameters (p < 0.05). Although this sequence was not correlated with age or body mass index (BMI), age was positively correlated with the mean and maximum diameters of CoA. These findings support the view that the spatiotemporal sequence of CoA deposition is independent of age, and that CoA become larger due to the accretion of new material over time.


2020 ◽  
Vol 117 (47) ◽  
pp. 29354-29362 ◽  
Author(s):  
Emilie L. Josephs ◽  
Talia Konkle

Space-related processing recruits a network of brain regions separate from those recruited in object processing. This dissociation has largely been explored by contrasting views of navigable-scale spaces to views of close-up, isolated objects. However, in naturalistic visual experience, we encounter spaces intermediate to these extremes, like the tops of desks and kitchen counters, which are not navigable but typically contain multiple objects. How are such reachable-scale views represented in the brain? In three human functional neuroimaging experiments, we find evidence for a large-scale dissociation of reachable-scale views from both navigable scene views and close-up object views. Three brain regions were identified that showed a systematic response preference to reachable views, located in the posterior collateral sulcus, the inferior parietal sulcus, and superior parietal lobule. Subsequent analyses suggest that these three regions may be especially sensitive to the presence of multiple objects. Further, in all classic scene and object regions, reachable-scale views dissociated from both objects and scenes with an intermediate response magnitude. Taken together, these results establish that reachable-scale environments have a distinct representational signature from both scene and object views in visual cortex.


2020 ◽  
Author(s):  
Emilie L. Josephs ◽  
Talia Konkle

Space-related processing recruits a network of brain regions separate from those recruited in object-related processing. This dissociation has largely been explored by contrasting views of navigable-scale spaces compared to close-up views of isolated objects. However, in naturalistic visual experience, we encounter spaces intermediate to these extremes, like the tops of desks and kitchen counters, which are not navigable but typically contain multiple objects. How are such reachable-scale views represented in the brain? In two functional neuroimaging experiments with human observers, we find evidence for a large-scale dissociation of reachable-scale views from both navigable scene views and close-up object views. Three brain regions were identified which showed a systematic response preference to reachable views, located in the posterior collateral sulcus, the inferior parietal sulcus, and superior parietal lobule. Subsequent analyses suggest that these three regions may be especially sensitive to the presence of multiple objects. Further, in all classic scene and object regions, reachable-scale views dissociated from both objects and scenes with an intermediate response magnitude. Taken together, these results establish that reachable-scale environments have a distinct representational signature from both scene and object views.


2019 ◽  
Vol 130 (5) ◽  
pp. 1728-1739 ◽  
Author(s):  
Christos Koutsarnakis ◽  
Aristotelis V. Kalyvas ◽  
Spyridon Komaitis ◽  
Faidon Liakos ◽  
Georgios P. Skandalakis ◽  
...  

OBJECTIVEThe authors investigated the specific topographic relationship of the optic radiation fibers to the roof and floor of the ventricular atrium because the current literature is ambiguous.METHODSThirty-five normal, adult, formalin-fixed cerebral hemispheres and 30 focused MRI slices at the level of the atrium were included in the study. The correlative anatomy of the optic radiation with regard to the atrial roof and floor was investigated in 15 specimens, each through focused fiber microdissections. The remaining 5 hemispheres were explored with particular emphasis on the trajectory of the collateral sulcus in relation to the floor of the atrium. In addition, the trajectory of the collateral sulcus was evaluated in 30 MRI scans.RESULTSThe atrial roof was observed to be devoid of optic radiations in all studied hemispheres, whereas the atrial floor was seen to harbor optic fibers on its lateral part. Moreover, the trajectory of the intraparietal sulcus, when followed, was always seen to correspond to the roof of the atrium, thus avoiding the optic pathway, whereas that of the collateral sulcus was found to lead to either the lateral atrial floor or outside the ventricle in 88% of the cases, therefore hitting the visual pathway.CONCLUSIONSOperative corridors accessing the ventricular atrium should be carefully tailored through detailed preoperative planning and effective use of intraoperative navigation to increase patient safety and enhance the surgeon’s maneuverability. The authors strongly emphasize the significance of accurate anatomical knowledge.


2018 ◽  
Vol 1 (4) ◽  
pp. 311-318
Author(s):  
Alejandra Jaume ◽  
Federico Salle ◽  
Pablo Pereda ◽  
Fernando Martínez ◽  
Nicolas Sgarbi ◽  
...  

The study of the mesial aspect has gained importance due to its anatomic complexity and its relationship to the surgical treatment of epilepsy. The aim of this paper is to do an anatomo-radiologic correlation of the morphology and topography of the mesial aspect of the temporal lobe, with its neurosurgical application in the treatment of diseases in the region. Eight (8) adult formalin fixed hemispheres with no pathologic signs were studied. On 4 of them sections within the 3 planes were performed (sagittal, coronal and axial), for radiologic correlation. On the remaining 4, dissection of the mesial region was done, in order to correlate the structures found during surgical approach to the region. Both in the cadaveric hemispheres and in the radiologic images, structures from the mesial region were identified, this included: collateral sulcus, rinal sulcus, parahippocampal gyrus, temporal uncus, hippocampal sulcus, hippocampus with its 3 sectors (head, body and tail), the inferior choroidal point and the collicular point that divides the hippocampus intro 3 sectors (anterior, medium and posterior). With the results obtained, the principal anamoto- radiologic aspects of the approach to the mesial aspect of the temporal lobe were analyzed, comparing them with results of previous reports. The proper knowledge of both morphologic and topographic anatomy of the mesial aspect of the temporal lobe is crucial for both interpreting radiologic studies and a correct surgical approach for surgical treatment of epilepsy.


2018 ◽  
Vol 118 ◽  
pp. e212-e216
Author(s):  
Aysegul Ozdemir Ovalioglu ◽  
Talat Cem Ovalioglu ◽  
Gokhan Canaz ◽  
Erhan Emel

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1526 ◽  
Author(s):  
Jonathan Winawer ◽  
Nathan Witthoft

The location and topography of the first three visual field maps in the human brain, V1-V3, are well agreed upon and routinely measured across most laboratories. The position of 4th visual field map, ‘hV4’, is identified with less consistency in the neuroimaging literature.  Using magnetic resonance imaging data, we describe landmarks to help identify the position and borders of ‘hV4’. The data consist of anatomical images, visualized as cortical meshes to highlight the sulcal and gyral patterns, and functional data obtained from retinotopic mapping experiments, visualized as eccentricity and angle maps on the cortical surface. Several features of the functional and anatomical data can be found across nearly all subjects and are helpful for identifying the location and extent of the hV4 map. The medial border of hV4 is shared with the posterior, ventral portion of V3, and is marked by a retinotopic representation of the upper vertical meridian. The anterior border of hV4 is shared with the VO-1 map, and falls on a retinotopic representation of the peripheral visual field, usually coincident with the posterior transverse collateral sulcus. The ventro-lateral edge of the map typically falls on the inferior occipital gyrus, where functional MRI artifacts often obscure the retinotopic data. Finally, we demonstrate the continuity of retinotopic parameters between hV4 and its neighbors; hV4 and V3v contain iso-eccentricity lines in register, whereas hV4 and VO-1 contain iso-polar angle lines in register. Together, the multiple constraints allow for a consistent identification of the hV4 map across most human subjects.


2017 ◽  
Author(s):  
Calum Worsley ◽  
Frank Gaillard
Keyword(s):  

2017 ◽  
Vol 126 (4) ◽  
pp. 1246-1252 ◽  
Author(s):  
Yasser Jeelani ◽  
Abdulkerim Gokoglu ◽  
Tomer Anor ◽  
Ossama Al-Mefty ◽  
Alan R. Cohen

OBJECTIVE Conventional approaches to the atrium of the lateral ventricle may be associated with complications related to direct cortical injury or brain retraction. The authors describe a novel approach to the atrium through a retrosigmoid transtentorial transcollateral sulcus corridor. METHODS Bilateral retrosigmoid craniotomies were performed on 4 formalin-fixed, colored latex–injected human cadaver heads (a total of 8 approaches). Microsurgical dissections were performed under 3× to 24× magnification, and endoscopic visualization was provided by 0° and 30° rigid endoscope lens systems. Image guidance was provided by coupling an electromagnetic tracking system with an open source software platform. Objective measurements on cortical thickness traversed and total depth of exposure were recorded. Additionally, the basal occipitotemporal surfaces of 10 separate cerebral hemisphere specimens were examined to define the surface topography of sulci and gyri, with attention to the appearance and anatomical patterns and variations of the collateral sulcus and the surrounding gyri. RESULTS The retrosigmoid approach allowed for clear visualization of the basal occipitotemporal surface. The collateral sulcus was identified and permitted easy endoscopic access to the ventricular atrium. The conical corridor thus obtained provided an average base working area of 3.9 cm2 at an average depth of 4.5 cm. The mean cortical thickness traversed to enter the ventricle was 1.4 cm. The intraventricular anatomy of the ipsilateral ventricle was defined clearly in all 8 exposures in this manner. The anatomy of the basal occipitotemporal surface, observed in a total of 18 hemispheres, showed a consistent pattern, with the collateral sulcus abutted by the parahippocampal gyrus medially, and the fusiform and lingual gyrus laterally. The collateral sulcus was found to be caudally bifurcated in 14 of the 18 specimens. CONCLUSIONS The retrosigmoid supracerebellar transtentorial transcollateral sulcus approach is technically feasible. This approach has the potential advantage of providing a short and direct path to the atrium, hence avoiding violation of deep neurovascular structures and preserving eloquent areas. Although this approach appears unconventional, it may provide a minimally invasive option for the surgical management of selected lesions within the atrium of the lateral ventricle.


Sign in / Sign up

Export Citation Format

Share Document