scholarly journals Large-scale dissociations between views of objects, scenes, and reachable-scale environments in visual cortex

2020 ◽  
Author(s):  
Emilie L. Josephs ◽  
Talia Konkle

Space-related processing recruits a network of brain regions separate from those recruited in object-related processing. This dissociation has largely been explored by contrasting views of navigable-scale spaces compared to close-up views of isolated objects. However, in naturalistic visual experience, we encounter spaces intermediate to these extremes, like the tops of desks and kitchen counters, which are not navigable but typically contain multiple objects. How are such reachable-scale views represented in the brain? In two functional neuroimaging experiments with human observers, we find evidence for a large-scale dissociation of reachable-scale views from both navigable scene views and close-up object views. Three brain regions were identified which showed a systematic response preference to reachable views, located in the posterior collateral sulcus, the inferior parietal sulcus, and superior parietal lobule. Subsequent analyses suggest that these three regions may be especially sensitive to the presence of multiple objects. Further, in all classic scene and object regions, reachable-scale views dissociated from both objects and scenes with an intermediate response magnitude. Taken together, these results establish that reachable-scale environments have a distinct representational signature from both scene and object views.

2020 ◽  
Vol 117 (47) ◽  
pp. 29354-29362 ◽  
Author(s):  
Emilie L. Josephs ◽  
Talia Konkle

Space-related processing recruits a network of brain regions separate from those recruited in object processing. This dissociation has largely been explored by contrasting views of navigable-scale spaces to views of close-up, isolated objects. However, in naturalistic visual experience, we encounter spaces intermediate to these extremes, like the tops of desks and kitchen counters, which are not navigable but typically contain multiple objects. How are such reachable-scale views represented in the brain? In three human functional neuroimaging experiments, we find evidence for a large-scale dissociation of reachable-scale views from both navigable scene views and close-up object views. Three brain regions were identified that showed a systematic response preference to reachable views, located in the posterior collateral sulcus, the inferior parietal sulcus, and superior parietal lobule. Subsequent analyses suggest that these three regions may be especially sensitive to the presence of multiple objects. Further, in all classic scene and object regions, reachable-scale views dissociated from both objects and scenes with an intermediate response magnitude. Taken together, these results establish that reachable-scale environments have a distinct representational signature from both scene and object views in visual cortex.


2017 ◽  
Author(s):  
Cameron Parro ◽  
Matthew L Dixon ◽  
Kalina Christoff

AbstractCognitive control mechanisms support the deliberate regulation of thought and behavior based on current goals. Recent work suggests that motivational incentives improve cognitive control, and has begun to elucidate the brain regions that may support this effect. Here, we conducted a quantitative meta-analysis of neuroimaging studies of motivated cognitive control using activation likelihood estimation (ALE) and Neurosynth in order to delineate the brain regions that are consistently activated across studies. The analysis included functional neuroimaging studies that investigated changes in brain activation during cognitive control tasks when reward incentives were present versus absent. The ALE analysis revealed consistent recruitment in regions associated with the frontoparietal control network including the inferior frontal sulcus (IFS) and intraparietal sulcus (IPS), as well as consistent recruitment in regions associated with the salience network including the anterior insula and anterior mid-cingulate cortex (aMCC). A large-scale exploratory meta-analysis using Neurosynth replicated the ALE results, and also identified the caudate nucleus, nucleus accumbens, medial thalamus, inferior frontal junction/premotor cortex (IFJ/PMC), and hippocampus. Finally, we conducted separate ALE analyses to compare recruitment during cue and target periods, which tap into proactive engagement of rule-outcome associations, and the mobilization of appropriate viscero-motor states to execute a response, respectively. We found that largely distinct sets of brain regions are recruited during cue and target periods. Altogether, these findings suggest that flexible interactions between frontoparietal, salience, and dopaminergic midbrain-striatal networks may allow control demands to be precisely tailored based on expected value.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marisa K. Heckner ◽  
Edna C. Cieslik ◽  
Vincent Küppers ◽  
Peter T. Fox ◽  
Simon B. Eickhoff ◽  
...  

AbstractMost everyday behaviors and laboratory tasks rely on visual, auditory and/or motor-related processes. Yet, to date, there has been no large-scale quantitative synthesis of functional neuroimaging studies mapping the brain regions consistently recruited during such perceptuo-motor processing. We therefore performed three coordinate-based meta-analyses, sampling the results of neuroimaging experiments on visual (n = 114), auditory (n = 122), or motor-related (n = 251) processing, respectively, from the BrainMap database. Our analyses yielded both regions known to be recruited for basic perceptual or motor processes and additional regions in posterior frontal cortex. Comparing our results with data-driven network definitions based on resting-state functional connectivity revealed good overlap in expected regions but also showed that perceptual and motor task-related activations consistently involve additional frontal, cerebellar, and subcortical areas associated with “higher-order” cognitive functions, extending beyond what is captured when the brain is at “rest.” Our resulting sets of domain-typical brain regions can be used by the neuroimaging community as robust functional definitions or masks of regions of interest when investigating brain correlates of perceptual or motor processes and their interplay with other mental functions such as cognitive control or affective processing. The maps are made publicly available via the ANIMA database.


Author(s):  
Hugues Duffau

Investigating the neural and physiological basis of language is one of the most important challenges in neurosciences. Direct electrical stimulation (DES), usually performed in awake patients during surgery for cerebral lesions, is a reliable tool for detecting both cortical and subcortical (white matter and deep grey nuclei) regions crucial for cognitive functions, especially language. DES transiently interacts locally with a small cortical or axonal site, but also nonlocally, as the focal perturbation will disrupt the entire subnetwork sustaining a given function. Thus, in contrast to functional neuroimaging, DES represents a unique opportunity to identify with great accuracy and reproducibility, in vivo in humans, the structures that are actually indispensable to the function, by inducing a transient virtual lesion based on the inhibition of a subcircuit lasting a few seconds. Currently, this is the sole technique that is able to directly investigate the functional role of white matter tracts in humans. Thus, combining transient disturbances elicited by DES with the anatomical data provided by pre- and postoperative MRI enables to achieve reliable anatomo-functional correlations, supporting a network organization of the brain, and leading to the reappraisal of models of language representation. Finally, combining serial peri-operative functional neuroimaging and online intraoperative DES allows the study of mechanisms underlying neuroplasticity. This chapter critically reviews the basic principles of DES, its advantages and limitations, and what DES can reveal about the neural foundations of language, that is, the large-scale distribution of language areas in the brain, their connectivity, and their ability to reorganize.


2019 ◽  
Vol 69 (6) ◽  
pp. 589-611
Author(s):  
Elissa C Kranzler ◽  
Ralf Schmälzle ◽  
Rui Pei ◽  
Robert C Hornik ◽  
Emily B Falk

Abstract Campaign success is contingent on adequate exposure; however, exposure opportunities (e.g., ad reach/frequency) are imperfect predictors of message recall. We hypothesized that the exposure-recall relationship would be contingent on message processing. We tested moderation hypotheses using 3 data sets pertinent to “The Real Cost” anti-smoking campaign: past 30-day ad recall from a rolling national survey of adolescents aged 13–17 (n = 5,110); ad-specific target rating points (TRPs), measuring ad reach and frequency; and ad-elicited response in brain regions implicated in social processing and memory encoding, from a separate adolescent sample aged 14–17 (n = 40). Average ad-level brain activation in these regions moderates the relationship between national TRPs and large-scale recall (p < .001), such that the positive exposure-recall relationship is more strongly observed for ads that elicit high levels of social processing and memory encoding in the brain. Findings advance communication theory by demonstrating conditional exposure effects, contingent on social and memory processes in the brain.


2001 ◽  
Vol 23 (2) ◽  
pp. 100-109 ◽  
Author(s):  
Jeong-Ho Chae ◽  
Xingbao Li ◽  
Ziad Nahas ◽  
F. Andrew Kozel ◽  
Mark S. George

New knowledge about the specific brain regions involved in neuropsychiatric disorders is rapidly evolving due to recent advances in functional neuroimaging techniques. The ability to stimulate the brain in awake alert adults without neurosurgery is a real advance that neuroscientists have long dreamed for. Several novel and minimally invasive techniques to stimulate the brain have recently developed. Among these newer somatic interventions, transcranial magnetic stimulation (TMS), vagus nerve stimulation (VNS) and deep brain stimulation (DBS) show promise as therapeutic tools in the treatment of neuropsychiatric disorders. This article reviews the history, methodology, and the future of these minimally invasive brain stimulation (MIBS) techniques and their emerging research and therapeutic applications in psychiatry


2014 ◽  
Vol 26 (8) ◽  
pp. 1829-1839 ◽  
Author(s):  
Mireia Hernández ◽  
Scott L. Fairhall ◽  
Alessandro Lenci ◽  
Marco Baroni ◽  
Alfonso Caramazza

Verbs and nouns are fundamental units of language, but their neural instantiation remains poorly understood. Neuropsychological research has shown that nouns and verbs can be damaged independently of each other, and neuroimaging research has found that several brain regions respond differentially to the two word classes. However, the semantic–lexical properties of verbs and nouns that drive these effects remain unknown. Here we show that the most likely candidate is predication: a core lexical feature involved in binding constituent arguments (boy, candies) into a unified syntactic–semantic structure expressing a proposition (the boy likes the candies). We used functional neuroimaging to test whether the intrinsic “predication-building” function of verbs is what drives the verb–noun distinction in the brain. We first identified verb-preferring regions with a localizer experiment including verbs and nouns. Then, we examined whether these regions are sensitive to transitivity—an index measuring its tendency to select for a direct object. Transitivity is a verb-specific property lying at the core of its predication function. Neural activity in the left posterior middle temporal and inferior frontal gyri correlates with transitivity, indicating sensitivity to predication. This represents the first evidence that grammatical class preference in the brain is driven by a word's function to build predication structures.


2019 ◽  
Author(s):  
Leyla Tarhan ◽  
Talia Konkle

Humans observe a wide range of actions in their surroundings. How is the visual cortex organized to process this diverse input? Using functional neuroimaging, we measured brain responses while participants viewed short videos of everyday actions, then probed the structure in these responses using voxel-wise encoding modeling. Responses were well fit by feature spaces that capture the body parts involved in an action and the action’s targets (i.e. whether the action was directed at an object, another person, the actor, and space). Clustering analyses revealed five large-scale networks that summarized the voxel tuning: one related to social aspects of an action, and four related to the scale of the interaction envelope, ranging from fine-scale manipulations directed at objects, to large-scale whole-body movements directed at distant locations. We propose that these networks reveal the major representational joints in how actions are processed by visual regions of the brain.Significance StatementHow does the brain perceive other people’s actions? Prior work has established that much of the visual cortex is active when observing others’ actions. However, this activity reflects a wide range of processes, from identifying a movement’s direction to recognizing its social content. We investigated how these diverse processes are organized within the visual cortex. We found that five networks respond during action observation: one that is involved in processing actions’ social content, and four that are involved in processing agent-object interactions and the scale of the effect that these actions have on the world (its “interaction envelope”). Based on these findings, we propose that sociality and interaction envelope size are two of the major features that organize action perception in the visual cortex.


2002 ◽  
Vol 47 (4) ◽  
pp. 327-336 ◽  
Author(s):  
Cheryl L Grady ◽  
Michelle L Keightley

In this paper, we review studies using functional neuroimaging to examine cognition in neuropsychiatric disorders. The focus is on social cognition, which is a topic that has received increasing attention over the past few years. A network of brain regions is proposed for social cognition that includes regions involved in processes relevant to social functioning (for example, self reference and emotion). We discuss the alterations of activity in these areas in patients with autism, depression, schizophrenia, and posttraumatic stress disorder in relation to deficits in social behaviour and symptoms. The evidence to date suggests that there may be some specificity of the brain regions involved in these 4 disorders, but all are associated with dysfunction in the amygdala and dorsal cingulate gyrus. Although there is much work remaining in this area, we are beginning to understand the complex interactions of brain function and behaviour that lead to disruptions of social abilities.


2021 ◽  
Author(s):  
Victor Nozais ◽  
Stephanie Forkel ◽  
Chris Foulon ◽  
Laurent Petit ◽  
Michel Thiebaut de Schotten

Abstract In recent years, the field of functional neuroimaging has moved from a pure localisationist approach of isolated functional brain regions to a more integrated view of those regions within functional networks. The methods used to investigate such networks, however, rely on local signals in grey matter and are limited in identifying anatomical circuitries supporting the interaction between brain regions. Mapping the brain circuits mediating the functional signal between brain regions would propel forward our understanding of the brain’s functional signatures and dysfunctions. We developed a novel method to unravel the relationship between brain circuits and functions: The Functionnectome. The Functionectome combines the functional signal from fMRI with the anatomy of white matter brain circuits to unlock and chart the first maps of functional white matter. To showcase the versatility of this new method, we provide the first functional white matter maps revealing the joint contribution of connected areas to motor, working memory, and language functions. The Functionnectome comes with an open source companion software and opens new avenues into studying functional networks by applying the method to already existing dataset and beyond task fMRI.


Sign in / Sign up

Export Citation Format

Share Document