scholarly journals Thermal Error Minimization of a Turning-Milling Center with Respect to its Multi-Functionality

2020 ◽  
Vol 14 (3) ◽  
pp. 475-483
Author(s):  
Martin Mareš ◽  
◽  
Otakar Horejš ◽  
Jan Hornych

Achieving high workpiece accuracy is a long-term goal of machine tool designers. Many causes can explain workpiece inaccuracy, with thermal errors being the most dominant. Indirect compensation (using predictive models) is a promising thermal error reduction strategy that does not increase machine tool costs. A modeling approach using transfer functions (i.e., a dynamic method with a physical basis) has the potential to deal with this issue. The method does not require any intervention into the machine tool structure, uses a minimum of additional gauges, and its modeling and calculation speed are suitable for real-time applications that result in as much as 80% thermal error reduction. Compensation models for machine tool thermal errors using transfer functions have been successfully applied to various kinds of single-purpose machines (milling, turning, floor-type, etc.) and have been implemented directly into their control systems. The aim of this research is to describe modern trends in machine tool usage and focuses on the applicability of the modeling approach to describe the multi-functionality of a turning-milling center. A turning-milling center is capable of adequately handling turning, milling, and boring operations. Calibrating a reliable compensation model is a real challenge. Options for reducing modeling and calibration time, an approach to include machine tool multi-functionality in the model structure, model transferability between different machines of the same type, and model verification out of the calibration range are discussed in greater detail.

2021 ◽  
Vol 2021 (3) ◽  
pp. 4512-4518
Author(s):  
M. Mares ◽  
◽  
O. Horejs ◽  

Achieving high workpiece accuracy is a long-term goal of machine tool designers. There are many causes of workpiece inaccuracy, with thermal errors being the most dominant. Indirect compensation (using predictive models) is a promising strategy for reducing thermal errors without increasing machine tool cost. A modelling approach using thermal transfer functions (a dynamic method with a physical basis) embodies the potential to deal with this issue. The method does not require interventions into the machine tool structure, uses a minimum of additional gauges and its modelling and calculation speed is suitable for real-time applications with fine results with up to 80% thermal error reduction. Advanced machine tool thermal error compensation models have been successfully applied on various kinds of single-purpose machines (milling, turning, floor-type, etc.) and implemented directly into their control systems. This research reflects modern trends in machine tool usage and as such is focused on the applicability of the modelling approach to describe specialised vertical turning lathe versatility. The specialised vertical turning lathe is adequately capable of carrying out turning and milling operations. Calibration of the reliable compensation model is a real challenge. The applicability of the approach during immediate switching between turning and milling operations is discussed in more detail.


2017 ◽  
Vol 868 ◽  
pp. 64-68
Author(s):  
Yu Bin Huang ◽  
Wei Sun ◽  
Qing Chao Sun ◽  
Yue Ma ◽  
Hong Fu Wang

Thermal deformations of machine tool are among the most significant error source of machining errors. Most of current thermal error modeling researches is about 3-axies machine tool, highly reliant on collected date, which could not predict thermal errors in design stage. In This paper, in order to estimate the thermal error of a 4-axise horizontal machining center. A thermal error prediction method in machine tool design stage is proposed. Thermal errors in workspace in different working condition are illustrated through numerical simulation and volumetric error model. Verification experiments shows the outcomes of this prediction method are basically correct.


1999 ◽  
Vol 213 (1) ◽  
pp. 1-9 ◽  
Author(s):  
S R Postlethwaite ◽  
J P Allen ◽  
D G Ford

2001 ◽  
Author(s):  
Youji Ma ◽  
Jingxia Yuan ◽  
Jun Ni

Abstract Thermal loads of internal and external sources cause thermal deformations of a machine tool structure and affect its accuracy. Software-based real-time error compensation method is an effective way to reduce the thermal errors. However, lack of knowledge of thermal loads impedes greater success. In this paper, a method of inverse heat transfer analysis is developed that, using temperature measurement data from multiple sensors mounted on a machine tool structure, the transient thermal loads of multiple heat sources can be estimated simultaneously. The method uses modal method and is carried out in frequency domain. The temperature measurement data are first transformed into frequency spectra through DFT. The modal method of inverse frequency response analysis is then used to obtain the thermal load spectra. Finally the thermal loads are recovered from their spectra through IDFT. The estimated thermal loads play crucial roles in estimating transient temperature fields and transient thermal errors of a machine tool structure. The issues of mode truncations and frequency truncations, and their effects on the efficiency and stability of the method are also discussed with simulation results. Finally, experimental results on a machining center column are presented.


2013 ◽  
Vol 303-306 ◽  
pp. 1782-1785
Author(s):  
Chong Zhi Mao ◽  
Qian Jian Guo

The purpose of this research is to improve the machining accuracy of a CNC machine tool through thermal error modeling and compensation. In this paper, a thermal error model based on back propagation networks (BPN) is presented, and the compensation is fulfilled. The results show that the BPN model improves the prediction accuracy of thermal errors on the CNC machine tool, and the thermal drift has been reduced from 15 to 5 after compensation.


1965 ◽  
Vol 87 (4) ◽  
pp. 455-463 ◽  
Author(s):  
G. W. Long ◽  
J. R. Lemon

This paper is one of four being presented simultaneously on the subject of self-excited machine-tool chatter. Transfer-function theory is applied to obtain a representation of the dynamics of a machine-tool structure. The stability theory developed to investigate self-excited machine-tool chatter requires such a representation. Transfer functions of simple symmetric systems are derived and compared with measurements. When measured frequency-response data of more complex structures are obtained, it provides a very convenient means of data interpretation and enables one to develop the significant equations of motion that define the structure response throughout a specified frequency range. The transfer function presents the phase relationship between structure response and exciting force at all frequencies in the specified range. This knowledge of phase is essential to the proper application of the stability theory and explains the “digging-in” type of instability that is often encountered in machine-tool operation. The instrumentation used throughout these tests is discussed and evaluated. The concept of developing dynamic expressions for machine-tool components and joining these together through properly defined boundary conditions, thereby building up the transfer function of the complete machine-tool structure, is suggested as an area for further study.


Author(s):  
Jie Zhu ◽  
Jun Ni ◽  
Albert J. Shih

Thermal errors are among the most significant contributors to machine tool errors. Successful reduction in thermal errors has been realized through thermal error compensation techniques in the past few decades. The effectiveness of thermal error models directly determines the compensation results. Most of the current thermal error modeling methods are empirical and highly rely on the collected data under specific working conditions, neglecting the insight into the underlying mechanisms that result in thermal deformations. In this paper, an innovative temperature sensor placement scheme and thermal error modeling strategy are proposed based on the thermal mode concept. The modeling procedures for both position independent and position dependent thermal errors are illustrated through numerical simulation and experiments. Satisfactory results have been achieved in terms of model accuracy and robustness.


2011 ◽  
Vol 121-126 ◽  
pp. 529-533
Author(s):  
Jian Han ◽  
Li Ping Wang ◽  
Ning Bo Cheng ◽  
Xu Wang

Thermal error in machine tools is one of the most significant causes of machining errors. This paper presents a new modeling method for machine tool error. Minimal-resource allocating networks (M-RAN) are used to establish the relationships between the temperature variables and thermal errors. Pt-100 thermal resistances and eddy current sensors are used to measure the temperature variables and the thermal errors respectively. A machining center is used to experiment. The test results show that method with minimal-resource allocating networks can predict the thermal errors of the machine accurately.


1998 ◽  
Vol 120 (3) ◽  
pp. 632-639 ◽  
Author(s):  
S. Fraser ◽  
M. H. Attia ◽  
M. O. M. Osman

With the ever increasing demand for higher machining accuracy at lower cost, thermal deformation of machine tool structures has to be minimized at the design stage, and compensated for during operation. To compensate for this type of error, two real-time process models are required to identify the magnitude of the transient thermal load and to estimate the relative thermal displacement between the tool and the work piece. Special considerations should be given to the solution of the first ill-posed inverse heat conduction model IHCP. In this paper, the concept of generalized modelling is extended to the thermal deformation problem. The results of this analysis is used to develop expressions for the generalized transfer functions of the thermal, and thermal deformation response of the machine tool structure. These transfer functions are the basic building blocks for real-time solution of the IHCP and then the deformation problem. The latter acts as a feed-back signal to the control system. Finite element simulation of the temperature field and the thermal deformation of a machine tool structure confirmed that the generalized transfer function approach can reproduce the accuracy of the finite element model but two orders of magnitude faster.


Sign in / Sign up

Export Citation Format

Share Document