scholarly journals Cellular-D2D Resource Allocation Algorithm Based on User Fairness

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 386 ◽  
Author(s):  
Raya Majid Alsharfa ◽  
Saleem Latteef Mohammed ◽  
Sadik Kamel Gharghan ◽  
Imran Khan ◽  
Bong Jun Choi

As more and more mobile multimedia services are produced, end users are increasingly demanding access to high-speed, low-latency mobile communication networks. Among them, device-to-device (D2D) communication does not need the data to be forwarded through the base station relay but allows the two mobile devices adjacent to each other to establish a direct local link under control of the base station. This flexible communication method reduces the processing bottlenecks and blind spots of the base station and can be widely used in dense user communication scenarios such as transportation systems. Aiming at the problem of high energy consumption and improved quality of service demands by the D2D users, this paper proposes a new scheme to effectively improve the user fairness and satisfaction based on the user grouping into clusters. The main idea is to create the interference graph between the D2D users which is based on the graph coloring theory and constructs the color lists of the D2D users while cellular users’ requirements are guaranteed. Finally, those D2D users who can share the same channel are grouped in the same cluster. Simulation results show that the proposed scheme outperforms the existing schemes and effectively improve system performance.

2022 ◽  
pp. 1-16
Author(s):  
Nagaraj Varatharaj ◽  
Sumithira Thulasimani Ramalingam

Most revolutionary applications extending far beyond smartphones and high configured mobile device use to the future generation wireless networks’ are high potential capabilities in recent days. One of the advanced wireless networks and mobile technology is 5G, where it provides high speed, better reliability, and amended capacity. 5 G offers complete coverage, which is accommodates any IoT device, connectivity, and intelligent edge algorithms. So that 5 G has a high demand in a wide range of commercial applications. Ambrosus is a commercial company that integrates block-chain security, IoT network, and supply chain management for medical and food enterprises. This paper proposed a novel framework that integrates 5 G technology, Machine Learning (ML) algorithms, and block-chain security. The main idea of this work is to incorporate the 5 G technology into Machine learning architectures for the Ambrosus application. 5 G technology provides continuous connection among the network user/nodes, where choosing the right user, base station, and the controller is obtained by using for ML architecture. The proposed framework comprises 5 G technology incorporate, a novel network orchestration, Radio Access Network, and a centralized distributor, and a radio unit layer. The radio unit layer is used for integrating all the components of the framework. The ML algorithm is evaluated the dynamic condition of the base station, like as IoT nodes, Ambrosus users, channels, and the route to enhance the efficiency of the communication. The performance of the proposed framework is evaluated in terms of prediction by simulating the model in MATLAB software. From the performance comparison, it is noticed that the proposed unified architecture obtained 98.6% of accuracy which is higher than the accuracy of the existing decision tree algorithm 97.1% .


Author(s):  
Tanyaluk Deeka ◽  
Boriboon Deeka ◽  
Surajate On-rit

Massive Multiple-Input Multiple-Output (MIMO) is widely considered a pivotal communication technology for future generations of wireless networks. Massive MIMO uses a large number of antennas at the base station, which offers better effectiveness in spectral and energy use. However, a Frequency Division Duplex (FDD) system is challenging in reciprocity since it is difficult to estimate channels and requires feeding back channel state information. Joint Spatial Division and Multiplexing (JSDM) is a simplified FDD technique to provide massive MIMO gains. The main idea of JSDM is related to grouping users with approximately similar channel covariance. Many machine learning algorithms have been applied to conduct user grouping. In this paper, to improve the user grouping, we employ Reinforcement Guided Competitive Learning (RGCL) to the user grouping and then compare it with clustering techniques, including K-means, and sequential K-means to achieve the appropriate user grouping. The experimental results show that the RGCL technique represents better performance in computational time and system throughput than the other two above mentioned techniques, since RGCL can avoid being trapping in local minima.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Qin Yu ◽  
Yizhe Zhao ◽  
Lanxin Zhang ◽  
Kun Yang ◽  
Supeng Leng

With the rapid advancement of wireless network technologies and the rapid increase in the number of mobile devices, mobile users (MUs) have an increasing high demand to access the Internet with guaranteed quality-of-service (QoS). Data and energy integrated communication networks (DEINs) are emerging as a new type of wireless networks that have the potential to simultaneously transfer wireless energy and information via the same base station (BS). This means that a physical BS is virtualized into two parts: one is transferring energy and the other is transferring information. The former is called virtual energy base station (eBS) and the latter is named as data base station (dBS). One important issue in such setting is dynamic resource allocation. Here the resource concerned includes both power and time. In this paper, we propose a fair data-and-energy resource allocation algorithm for DEINs by jointly designing the downlink energy beamforming and a power-and-time allocation scheme, with the consideration of finite capacity batteries at MUs and power sensitivity of radio frequency (RF) to direct current (DC) conversion circuits. Simulation results demonstrate that our proposed algorithm outperforms the existing algorithms in terms of fairness, beamforming design, sensitivity, and average throughput.


Author(s):  
Otto Strobel ◽  
Jan Lubkoll ◽  
Daniel Seibl

The main idea of these lecture notes is to give an overview of Optical Data Buses for Automotive Application. The most important devices for fiber-optic transmission systems are presented, and their properties discussed. In particular, we consider such systems working with those basic components which are necessary to explain the principle of operation. Among them is the optical transmitter, consisting of a light source, typically a low speed LED or in case of higher demands a high speed driven laser diode. Furthermore, the optical receiver has to be mentioned. It consists of a photodiode and depending on the demands a low performance receiver circuit or a low noise high bit rate front-end amplifier. Yet, in the focus of the considerations, the optical fiber is the dominant element in optical communication systems.


Author(s):  
TianXiang Gao ◽  
Zhen Bing Luo ◽  
Yan Zhou ◽  
Sheng Ke Yang

Traditional electro-thermal de-icing strategy has the drawback of high energy consumption and its heat knife accounts for a considerable amount of the cost. Compared to electro-thermal de-icing, thermo-mechanical expulsion de-icing system eliminates the heat knife by combining electric-heating with electro-magnetic expulsion de-icing system. The consumption is significantly lower but the system has complex mechanical structures. In this article, a novel de-icing strategy combining electric-heating with plasma synthetic jet actuator is proposed for the first time. Its main idea is to replace heat knife with a simple mechanical device. During the de-icing process, the electric-heating is used to remove the adhesion force, then a single pulse of plasma synthetic jet actuator exerts a rapid force on ice and makes it fracture. Schlieren imaging shows plasma synthetic jet actuator can make free ice columns fracture into pieces and powder. The ice can even be completely penetrated by pressurized air when the discharge energy is relatively large. And compared with the non-deicing process, the intensities of waves and jets are significantly weakened. During the hybrid de-icing process, high-speed photography shows that plasma synthetic jet actuator can divide an ice layer 200 mm in diameter and 10 mm in thickness into multiple blocks completely in tens of milliseconds after electric-heating removes the adhesion force. Besides, energy consumption of plasma synthetic jet actuator in a de-icing cycle accounts for only 0.27% of the whole system. Compared with the free ice columns of the same size, the ice debonded by electric-heating fragmented into smaller blocks after activating plasma synthetic jet actuator. However, heating for too long does not bring more beneficial effects on the fracture of ice in this experiment. At last, a new “micro piston ice-breaker” which is waterproof is proposed to meet the needs of in-flight de-icing.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
Showkat Ahmad Bhat ◽  
Amandeep Singh

Background & Objective: Digital multimedia exchange between different mobile communication devices has increased rapidly with the invention of the high-speed data services like LTE-A, LTE, and WiMAX. However, there are always certain security risks associated with the use of wireless communication technologies. Methods: To protect the digital images against cryptographic attacks different image encryption algorithms are being employed in the wireless communication networks. These algorithms use comparatively less key spaces and accordingly offer inadequate security. The proposed algorithm described in this paper based on Rubik’s cube principle because of its high confusion and diffusion properties, Arnold function having effective scrambling power, blocking cipher with block encryption and permutation powers. The main strength of the proposed algorithm lies in the large key spaces and the combination of different high power encryption techniques at each stage of algorithm. The different operations employed on the image are with four security keys of different key spaces at multiple stages of the algorithm. Results & Conclusion: Finally, the effectiveness and the security analysis results shows that the proposed image encryption algorithm attains high encryption and security capabilities along with high resistance against cryptanalytic attacks, differential attacks and statistical attacks.


2020 ◽  
Vol 13 (2) ◽  
pp. 168-172
Author(s):  
Ravi Kumar Poluru ◽  
M. Praveen Kumar Reddy ◽  
Syed Muzamil Basha ◽  
Rizwan Patan ◽  
Suresh Kallam

Background:Recently Wireless Sensor Network (WSN) is a composed of a full number of arbitrarily dispensed energy-constrained sensor nodes. The sensor nodes help in sensing the data and then it will transmit it to sink. The Base station will produce a significant amount of energy while accessing the sensing data and transmitting data. High energy is required to move towards base station when sensing and transmitting data. WSN possesses significant challenges like saving energy and extending network lifetime. In WSN the most research goals in routing protocols such as robustness, energy efficiency, high reliability, network lifetime, fault tolerance, deployment of nodes and latency. Most of the routing protocols are based upon clustering has been proposed using heterogeneity. For optimizing energy consumption in WSN, a vital technique referred to as clustering.Methods:To improve the lifetime of network and stability we have proposed an Enhanced Adaptive Distributed Energy-Efficient Clustering (EADEEC).Results:In simulation results describes the protocol performs better regarding network lifetime and packet delivery capacity compared to EEDEC and DEEC algorithm. Stability period and network lifetime are improved in EADEEC compare to DEEC and EDEEC.Conclusion:The EADEEC is overall Lifetime of a cluster is improved to perform the network operation: Data transfer, Node Lifetime and stability period of the cluster. EADEEC protocol evidently tells that it improved the throughput, extended the lifetime of network, longevity, and stability compared with DEEC and EDEEC.


Sign in / Sign up

Export Citation Format

Share Document