malolactic enzyme
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 0)

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255925
Author(s):  
Janine Hofmann ◽  
Mebratu A. Bitew ◽  
Miku Kuba ◽  
David P. De Souza ◽  
Hayley J. Newton ◽  
...  

The zoonotic pathogen Coxiella burnetii, the causative agent of the human disease Q fever, is an ever-present danger to global public health. Investigating novel metabolic pathways necessary for C. burnetii to replicate within its unusual intracellular niche may identify new therapeutic targets. Recent studies employing stable isotope labelling established the ability of C. burnetii to synthesize lactate, despite the absence of an annotated synthetic pathway on its genome. A noncanonical lactate synthesis pathway could provide a novel anti-Coxiella target if it is essential for C. burnetii pathogenesis. In this study, two C. burnetii proteins, CBU1241 and CBU0823, were chosen for analysis based on their similarities to known lactate synthesizing enzymes. Recombinant GST-CBU1241, a putative malate dehydrogenase (MDH), did not produce measurable lactate in in vitro lactate dehydrogenase (LDH) activity assays and was confirmed to function as an MDH. Recombinant 6xHis-CBU0823, a putative NAD+-dependent malic enzyme, was shown to have both malic enzyme activity and MDH activity, however, did not produce measurable lactate in either LDH or malolactic enzyme activity assays in vitro. To examine potential lactate production by CBU0823 more directly, [13C]glucose labelling experiments compared label enrichment within metabolic pathways of a cbu0823 transposon mutant and the parent strain. No difference in lactate production was observed, but the loss of CBU0823 significantly reduced 13C-incorporation into glycolytic and TCA cycle intermediates. This disruption to central carbon metabolism did not have any apparent impact on intracellular replication within THP-1 cells. This research provides new information about the mechanism of lactate biosynthesis within C. burnetii, demonstrating that CBU1241 is not multifunctional, at least in vitro, and that CBU0823 also does not synthesize lactate. Although critical for normal central carbon metabolism of C. burnetii, loss of CBU0823 did not significantly impair replication of the bacterium inside cells.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Manuel Hörl ◽  
Tobias Fuhrer ◽  
Nicola Zamboni

ABSTRACT The redox cofactor NADPH is required as a reducing equivalent in about 100 anabolic reactions throughout metabolism. To ensure fitness under all conditions, the demand is fulfilled by a few dehydrogenases in central carbon metabolism that reduce NADP+ with electrons derived from the catabolism of nutrients. In the case of Bacillus subtilis growing on glucose, quantitative flux analyses indicate that NADPH production largely exceeds biosynthetic needs, suggesting a hitherto unknown mechanism for NADPH balancing. We investigated the role of the four malic enzymes present in B. subtilis that could bring about a metabolic cycle for transhydrogenation of NADPH into NADH. Using quantitative 13C metabolic flux analysis, we found that isoform YtsJ alone contributes to NADPH balancing in vivo and demonstrated relevant NADPH-oxidizing activity by YtsJ in vitro. To our surprise, we discovered that depending on NADPH, YtsJ switches activity from a pyruvate-producing malic enzyme to a lactate-generating malolactic enzyme. This switch in activity allows YtsJ to adaptively compensate for cellular NADPH over- and underproduction upon demand. Finally, NADPH-dependent bifunctional activity was also detected in the YtsJ homolog in Escherichia coli MaeB. Overall, our study extends the known redox cofactor balancing mechanisms by providing first-time evidence that the type of catalyzed reaction by an enzyme depends on metabolite abundance. IMPORTANCE A new mechanism for NADPH balancing was discovered in Bacillus subtilis. It pivots on the bifunctional enzyme YtsJ, which is known to catalyze NADP-dependent malate decarboxylation. We found that in the presence of excessive NADPH, the same enzyme switches to malolactic activity and creates a transhydrogenation cycle that ultimately converts NADPH to NADH. This provides a regulated mechanism to immediately adjust NADPH/NADP+ in response to instantaneous needs.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3431
Author(s):  
Waldo Acevedo ◽  
Pablo Cañón ◽  
Felipe Gómez-Alvear ◽  
Jaime Huerta ◽  
Daniel Aguayo ◽  
...  

Malolactic fermentation (MLF) is responsible for the decarboxylation of l-malic into lactic acid in most red wines and some white wines. It reduces the acidity of wine, improves flavor complexity and microbiological stability. Despite its industrial interest, the MLF mechanism is not fully understood. The objective of this study was to provide new insights into the role of pH on the binding of malic acid to the malolactic enzyme (MLE) of Oenococcus oeni. To this end, sequence similarity networks and phylogenetic analysis were used to generate an MLE homology model, which was further refined by molecular dynamics simulations. The resulting model, together with quantum polarized ligand docking (QPLD), was used to describe the MLE binding pocket and pose of l-malic acid (MAL) and its l-malate (−1) and (−2) protonation states (MAL− and MAL2−, respectively). MAL2− has the lowest ∆Gbinding, followed by MAL− and MAL, with values of −23.8, −19.6, and −14.6 kJ/mol, respectively, consistent with those obtained by isothermal calorimetry thermodynamic (ITC) assays. Furthermore, molecular dynamics and MM/GBSA results suggest that only MAL2− displays an extended open conformation at the binding pocket, satisfying the geometrical requirements for Mn2+ coordination, a critical component of MLE activity. These results are consistent with the intracellular pH conditions of O. oeni cells—ranging from pH 5.8 to 6.1—where the enzymatic decarboxylation of malate occurs.


2013 ◽  
Vol 79 (18) ◽  
pp. 5509-5518 ◽  
Author(s):  
José María Landete ◽  
Sergi Ferrer ◽  
Vicente Monedero ◽  
Manuel Zúñiga

ABSTRACTLactobacillus caseiis the only lactic acid bacterium in which two pathways forl-malate degradation have been described: the malolactic enzyme (MLE) and the malic enzyme (ME) pathways. Whereas the ME pathway enablesL. caseito grow onl-malate, MLE does not support growth. Themlegene cluster consists of three genes encoding MLE (mleS), the putativel-malate transporter MleT, and the putative regulator MleR. Themaegene cluster consists of four genes encoding ME (maeE), the putative transporter MaeP, and the two-component system MaeKR. Since both pathways compete for the same substrate, we sought to determine whether they are coordinately regulated and their role inl-malate utilization as a carbon source. Transcriptional analyses revealed that themleandmaegenes are independently regulated and showed that MleR acts as an activator and requires internalization ofl-malate to induce the expression ofmlegenes. Notwithstanding, bothl-malate transporters were required for maximall-malate uptake, although only anmleTmutation caused a growth defect onl-malate, indicating its crucial role inl-malate metabolism. However, inactivation of MLE resulted in higher growth rates and higher final optical densities onl-malate. The limited growth onl-malate of the wild-type strain was correlated to a rapid degradation of the availablel-malate tol-lactate, which cannot be further metabolized. Taken together, our results indicate thatL. caseil-malate metabolism is not optimized for utilization ofl-malate as a carbon source but for deacidification of the medium by conversion ofl-malate intol-lactate via MLE.


Bioengineered ◽  
2013 ◽  
Vol 4 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Christina Schümann ◽  
Herbert Michlmayr ◽  
Andrés M. del Hierro ◽  
Klaus D. Kulbe ◽  
Vladimir Jiranek ◽  
...  

2013 ◽  
Vol 169 (8) ◽  
pp. 2350-2361 ◽  
Author(s):  
Xiuyan Zhang ◽  
Xiaoyan Hou ◽  
Fang Liang ◽  
Fusheng Chen ◽  
Xiaohong Wang

AMB Express ◽  
2012 ◽  
Vol 2 (1) ◽  
pp. 19 ◽  
Author(s):  
Christina Schümann ◽  
Herbert Michlmayr ◽  
Reinhard Eder ◽  
Andrés M del Hierro ◽  
Klaus D Kulbe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document