transient rheology
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Harriet Lau ◽  
Ulrich Faul ◽  
Benjamin Holtzman ◽  
Guy Paxman ◽  
Jacqueline Austermann ◽  
...  
Keyword(s):  

2021 ◽  
Vol 36 (3) ◽  
pp. 255-263
Author(s):  
N. Meyer ◽  
A. N. Hrymak ◽  
L. Kärger

Abstract Sheet Molding Compounds (SMC) offer a cost efficient way to enhance mechanical properties of a polymer with long discontinuous fibers, while maintaining formability to integrate functions, such as ribs, beads or other structural reinforcements. During SMC manufacturing, fibers remain often in a bundled configuration and the resulting fiber architecture determines part properties. Accurate prediction of this architecture by simulation of flow under consideration of the transient rheology and transient fiber orientations can speed up the development process. In particular, the interaction of bundles is of significance to predict molding pressures correctly in a direct simulation approach, which resolves individual fiber bundles. Thus, this work investigates the tangential short-range lubrication forces between fiber bundles with analytical and numerical techniques. A relation between the effective sheared gap between bundles and the bundle separation distance at the contact point is found and compared to experimental results from literature. The result is implemented in an ABAQUS contact subroutine to incorporate short-range interactions in a direct bundle simulation framework.


Solid Earth ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 1111-1124
Author(s):  
Stefano Urbani ◽  
Guido Giordano ◽  
Federico Lucci ◽  
Federico Rossetti ◽  
Gerardo Carrasco-Núñez

Abstract. Structural studies in active caldera systems are widely used in geothermal exploration to reconstruct volcanological conceptual models. Active calderas are difficult settings to perform such studies mostly because of the highly dynamic environment, dominated by fast accumulation of primary and secondary volcanic deposits, the variable and transient rheology of the shallow volcanic pile, and the continuous feedbacks between faulting, secondary porosity creation, and geothermal fluid circulation, alteration and cementation that tend to obliterate the tectonic deformation structures. In addition, deformation structures can be also caused by near- and far-field stress regimes, which include magmatic intrusions at various depths, the evolving topography and regional tectonics. A lack of consideration of all these factors may severely underpin the reliability of structural studies. By rebutting and providing a detailed discussion of all the points raised by the comment of Norini and Groppelli (2020) to the Urbani et al. (2020) paper, we take the opportunity to specify the scientific rationale of our structural fieldwork and strengthen its relevance for geothermal exploration and exploitation in active caldera geothermal systems in general and, particularly, for the Holocene history of deformation and geothermal circulation in the Los Humeros caldera. At the same time, we identify several major flaws in the approach and results presented in Norini and Groppelli (2020), such as (1) the lack of an appropriate ranking of the deformation structures considering an inventory method for structural analysis; (2) the misinterpretation and misquoting of Urbani et al. (2020) and other relevant scientific literature; and (3) irrelevant and contradictory statements within their comment.


2021 ◽  
Author(s):  
Stefano Urbani ◽  
Guido Giordano ◽  
Federico Lucci ◽  
Federico Rossetti ◽  
Valerio Acocella ◽  
...  

Abstract. Structural studies in active caldera systems are widely used in geothermal exploration to reconstruct volcanological conceptual models. Active calderas are difficult settings to perform such studies mostly because of the highly dynamic environment, dominated by fast accumulation of primary and secondary volcanic deposits, the variable and transient rheology of the shallow volcanic pile, and the continuous feedback between faulting and geothermal fluid circulation/alteration that tend to obliterate the tectonic deformation structures. In addition, deformation structures can be also caused by near- and far-field stress regimes, which include magmatic intrusions at various depths (volumes and rates), the evolving topography and regional tectonics. A lack of consideration of all these factors may severely underpin the reliability of structural studies. By rebutting and providing a detailed discussion of all the points raised by the comment of Norini and Groppelli (2020) to the Urbani et al. (2020) paper, we take the opportunity to specify the scientific rationale of our structural fieldwork and strengthen its relevance for geothermal exploration/exploitation in active caldera geothermal systems in general, and, particularly, for the Holocene history of deformation and geothermal circulation in the Los Humeros caldera. At the same time, we identify several major flaws in the approach and results presented in Norini and Groppelli (2020).


Geology ◽  
2020 ◽  
Author(s):  
Shaozhuo Liu ◽  
Zheng-Kang Shen ◽  
Roland Bürgmann ◽  
Sigurjón Jónsson

Since the occurrence of the 1992 CE Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes in the Mojave Desert (California, USA), postseismic deformation following both earthquakes has been intensively studied, and models with a strong crust overlying a low-viscosity mantle asthenosphere have been favored. However, we recently found that the near-field postseismic transients after the two earthquakes have lasted longer than previously thought, which requires a revision of the postseismic modeling. Our new modeling results based on the revised postseismic transients show that: (1) the effective viscosity of the lower crust beneath the Mojave region at the decadal time scale is ~2 × 1020 Pa·s (transient viscosity ~2 × 1019 Pa·s), i.e., only ~5 times that of the underlying mantle asthenosphere, and (2) the transient viscosity of the upper mantle exhibits a time-dependent increase, providing fresh geodetic evidence for frequency-dependent rheology (e.g., Andrade or extended Burgers rheology). The inferred transient rheology for the first year agrees well with that obtained for the July 2019 Mw 6.4 and Mw 7.1 Ridgecrest earthquakes ~180 km north of the two Mojave events. Our modeling results support a thin crème brûlée model for the Eastern California Shear Zone (part of the Pacific-North America plate boundary) in which both the lower crust and the upper mantle exhibit ductility at decadal time scales.


2020 ◽  
Author(s):  
Christopher Thom ◽  
David Goldsby ◽  
Kathryn Kumamoto ◽  
Lars Hansen

<p>The dynamics of several geophysical phenomena, such as post-seismic deformation and post-glacial isostatic readjustment, are inferred to be controlled by the transient rheology of olivine in Earth’s mantle. However, the physical mechanism(s) that underlie(s) this behavior remain(s) relatively unknown, and most experimental studies focus on quantifying steady-state rheology. Recent studies have suggested that back stresses caused by long-range elastic interactions among dislocations could play a role in transient deformation of olivine. Wallis et al. (2017) identified an internal back stress in olivine single crystals deforming at 1573 K, which gave rise to anelastic transient deformation in stress dip experiments. Hansen et al. (2019) quantified the room-temperature strain hardening of olivine deforming by low-temperature plasticity and measured a back stress that gave rise to a Bauschinger effect, a well-known phenomenon in materials science wherein the yield stress is reduced upon reversing the sense of direction of the deformation.</p><p>To explore deformation at very high dislocation density, we have developed a novel nanoindentation load drop method to measure the back stress in a material at sub-micron length scales. Using a self-similar Berkovich tip, we measure back stresses in single crystals of olivine, quartz, and plagioclase feldspar at a range of indentation depths from 100–1700 nm, corresponding to geometrically necessary dislocation (GND) densities of order 10<sup>14</sup>–10<sup>15</sup> m<sup>-2</sup>. Our results reveal a power-law relationship between back stress and GND density with an exponent ranging from 0.44-0.55 for each material, with an average across all materials of 0.48. Normalizing back stress by the shear modulus measured during the indentation test results in a master curve with a power-law exponent of 0.44, in close agreement with the theoretical prediction (0.5) derived from the classical Taylor hardening equation (Taylor, 1934). For olivine, the extrapolation of our fit quantitatively agrees with other published data spanning over 5 orders of magnitude in GND density and temperatures ranging from 298-1573 K. This work provides the first experimental evidence in support of Taylor hardening in a geologic material, supports the assertion that strain hardening is an athermal process that can occur during high-temperature creep, and suggests that back stresses from long-range interactions among dislocations must be considered in rheological models of transient creep.</p>


Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1203-1207 ◽  
Author(s):  
A.K. Ault ◽  
J.L. Jensen ◽  
R.G. McDermott ◽  
F.-A. Shen ◽  
B.R. Van Devener

Abstract Friction-generated heat and the subsequent thermal evolution control fault material properties and thus strength during the earthquake cycle. We document evidence for transient, nanoscale fault rheology on a high-gloss, light-reflective hematite fault mirror (FM). The FM cuts specularite with minor quartz from the Pleistocene El Laco Fe-ore deposit, northern Chile. Scanning and transmission electron microscopy data reveal that the FM volume comprises a <50-μm-thick zone of polygonal hematite nanocrystals with spherical silica inclusions, rhombohedral twins, no shape or crystallographic preferred orientation, decreasing grain size away from the FM surface, and FM surface magnetite nanoparticles and Fe2+ suboxides. Sub–5-nm-thick silica films encase hematite grains and connect to amorphous interstitial silica. Observations imply that coseismic shear heating (temperature >1000 °C) generated transiently amorphous, intermixed but immiscible, and rheologically weak Fe-oxide and silica. Hematite regrowth in a fault-perpendicular thermal gradient, sintering, twinning, and a topographic network of nanometer-scale ridges from crystals interlocking across the FM surface collectively restrengthened fault material. Results reveal how temperature-induced weakening preconditions fault healing. Nanoscale transformations may promote subsequent strain delocalization and development of off-fault damage.


2019 ◽  
Vol 99 (11) ◽  
Author(s):  
Alireza Behtash ◽  
Syo Kamata ◽  
Mauricio Martinez ◽  
Haosheng Shi

2019 ◽  
Vol 6 (3) ◽  
pp. 139-147 ◽  
Author(s):  
Stephanie Walker ◽  
Uranbileg Daalkhaijav ◽  
Dylan Thrush ◽  
Callie Branyan ◽  
Osman Dogan Yirmibesoglu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document