scholarly journals Optimal integral sliding mode controller controller design for 2-RLFJ manipulator based on hybrid optimization algorithm

Author(s):  
Randa Jalaa Yahya ◽  
Nizar Hadi Abbas

A newly hybrid nature-inspired algorithm called HSSGWOA is presented with the combination of the salp swarm algorithm (SSA) and grey wolf optimizer (GWO). The major idea is to combine the salp swarm algorithm's exploitation ability with the grey wolf optimizer's exploration ability to generate both variants' strength. The proposed algorithm uses to tune the parameters of the integral sliding mode controller (ISMC) that design to improve the dynamic performance of the two-link flexible joint manipulator. The efficiency and the capability of the proposed hybrid algorithm are evaluated based on the selected test functions. It is clear that when compared to other algorithms like SSA, GWO, differential evolution (DE), gravitational search algorithm (GSA), particles swarm optimization (PSO), and whale optimization algorithm (WOA). The ISMC parameters were tuned using the SSA, which was then compared to the HSSGWOA algorithm. The simulation results show the capabilities of the proposed algorithm, which gives an enhancement percentage of 57.46% compared to the standard algorithm for one of the links, and 55.86% for the other.

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1190
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Štěpán Hubálovský

There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching–Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.


2021 ◽  
Author(s):  
Wesley Peres ◽  
Bruna C. Ferreira ◽  
Fabrício C. Gonçalves ◽  
Felipe L. S. Magalhães ◽  
Junior N. N. Costa ◽  
...  

O amortecimento de oscilações de potência é essencial na operação de sistemas de potência. Oscilações não amortecidas ou fracamente amortecidas podem limitar a capacidade de transferência de potência e causar blecautes. Para resolver esse problema, estabilizadores de sistemas de potência (ESP) instalados em geradores síncronos têm sido utilizados desde a década de setenta. Outra opção é utilizar um controlador denominado Power Oscillation Damper (POD) em dispositivos FACTS tais como o Compensador Estático de Reativos (CER). Com o objetivo de melhorar a estabilidade dos sistemas de potência, um projeto ótimo e robusto de ESP e POD deve ser realizado. Considerado as soluções de boa qualidade fornecidas por metaheurísticas, esse artigo compara quatro técnicas (Whale Optimization Algorithm, Grey Wolf Optimization, Gravitational Search Algorithm e Algoritmos Genéticos) na solução do problema de otimização mencionado. O ajuste de controladores ESP e POD é formulado como um problema de otimização com o objetivo de maximizar o coeficiente de amortecimento do autovalor dominante em malha fechada considerando vários pontos de operação para garantia de robustez. Resultados para um sistema de duas áreas são discutidos.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5214
Author(s):  
Mohammad Dehghani ◽  
Štěpán Hubálovský ◽  
Pavel Trojovský

Numerous optimization problems designed in different branches of science and the real world must be solved using appropriate techniques. Population-based optimization algorithms are some of the most important and practical techniques for solving optimization problems. In this paper, a new optimization algorithm called the Cat and Mouse-Based Optimizer (CMBO) is presented that mimics the natural behavior between cats and mice. In the proposed CMBO, the movement of cats towards mice as well as the escape of mice towards havens is simulated. Mathematical modeling and formulation of the proposed CMBO for implementation on optimization problems are presented. The performance of the CMBO is evaluated on a standard set of objective functions of three different types including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal. The results of optimization of objective functions show that the proposed CMBO has a good ability to solve various optimization problems. Moreover, the optimization results obtained from the CMBO are compared with the performance of nine other well-known algorithms including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Teaching-Learning-Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Marine Predators Algorithm (MPA), Tunicate Swarm Algorithm (TSA), and Teamwork Optimization Algorithm (TOA). The performance analysis of the proposed CMBO against the compared algorithms shows that CMBO is much more competitive than other algorithms by providing more suitable quasi-optimal solutions that are closer to the global optimal.


2021 ◽  
Vol 11 (10) ◽  
pp. 4382
Author(s):  
Ali Sadeghi ◽  
Sajjad Amiri Doumari ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Pavel Trojovský ◽  
...  

Optimization is the science that presents a solution among the available solutions considering an optimization problem’s limitations. Optimization algorithms have been introduced as efficient tools for solving optimization problems. These algorithms are designed based on various natural phenomena, behavior, the lifestyle of living beings, physical laws, rules of games, etc. In this paper, a new optimization algorithm called the good and bad groups-based optimizer (GBGBO) is introduced to solve various optimization problems. In GBGBO, population members update under the influence of two groups named the good group and the bad group. The good group consists of a certain number of the population members with better fitness function than other members and the bad group consists of a number of the population members with worse fitness function than other members of the population. GBGBO is mathematically modeled and its performance in solving optimization problems was tested on a set of twenty-three different objective functions. In addition, for further analysis, the results obtained from the proposed algorithm were compared with eight optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), teaching–learning-based optimization (TLBO), gray wolf optimizer (GWO), and the whale optimization algorithm (WOA), tunicate swarm algorithm (TSA), and marine predators algorithm (MPA). The results show that the proposed GBGBO algorithm has a good ability to solve various optimization problems and is more competitive than other similar algorithms.


2021 ◽  
pp. 107754632110034
Author(s):  
Ololade O Obadina ◽  
Mohamed A Thaha ◽  
Kaspar Althoefer ◽  
Mohammad H Shaheed

This article presents a novel hybrid algorithm based on the grey-wolf optimizer and whale optimization algorithm, referred here as grey-wolf optimizer–whale optimization algorithm, for the dynamic parametric modelling of a four degree-of-freedom master–slave robot manipulator system. The first part of this work consists of testing the feasibility of the grey-wolf optimizer–whale optimization algorithm by comparing its performance with a grey-wolf optimizer, whale optimization algorithm and particle swarm optimization using 10 benchmark functions. The grey-wolf optimizer–whale optimization algorithm is then used for the model identification of an experimental master–slave robot manipulator system using the autoregressive moving average with exogenous inputs model structure. Obtained results demonstrate that the hybrid algorithm is effective and can be a suitable substitute to solve the parameter identification problem of robot models.


2019 ◽  
Vol 9 (18) ◽  
pp. 3755 ◽  
Author(s):  
Wei Chen ◽  
Haoyuan Hong ◽  
Mahdi Panahi ◽  
Himan Shahabi ◽  
Yi Wang ◽  
...  

The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated landslide modelling framework, in which an adaptive neuro-fuzzy inference system (ANFIS) is combined with the two optimization algorithms of whale optimization algorithm (WOA) and grey wolf optimizer (GWO) at Anyuan County, China. It means that WOA and GWO are used as two meta-heuristic algorithms to improve the prediction performance of the ANFIS-based methods. In addition, the step-wise weight assessment ratio analysis (SWARA) method is used to obtain the initial weight of each class of landslide influencing factors. To validate the effectiveness of the proposed framework, 315 landslide events in history were selected for our experiments and were randomly divided into the training and verification sets. To perform landslide susceptibility mapping, fifteen geological, hydrological, geomorphological, land cover, and other factors are considered for the modelling construction. The landslide susceptibility maps by SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-WOA, and SWARA-ANFIS-GWO models are assessed using the measures of the receiver operating characteristic (ROC) curve and root-mean-square error (RMSE). The experiments demonstrated that the obtained results of modelling process from the SWARA to the SAWRA-ANFIS-GWO model were more accurate and that the proposed methods have satisfactory prediction ability. Specifically, prediction accuracy by area under the curve (AUC) of SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-GWO, and SWARA-ANFIS-WOA models were 0.831, 0.831, 0.850, 0.856, and 0.869, respectively. Due to adaptability and usability, the proposed prediction methods can be applied to other areas for landslide management and mitigation as well as prevention throughout the world.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 494
Author(s):  
Sahazati Md Rozali ◽  
Rozilawati Mohd Nor ◽  
Amar Faiz Zainal Abidin ◽  
Muhammad Kamarudin ◽  
Zairi Ismael Rizman

This work presents the integration of two robust controllers such as back-stepping and sliding mode controller, which is designed for nonlinear system with external disturbance injected to its actuator. Gravitational Search Algorithm (GSA) is applied to the designed controller to optimize the control and reaching law parameters for the system. The dynamics of the system is developed by consider the external force as system’s nonlinearities. The tracking output and tracking error produced by combination of these two controllers is compared with the performance of classical sliding mode controller. Based on the results obtained, integration of these two controllers generates better performance than classical sliding mode controller based on its output and error.  


2020 ◽  
Vol 2 (4) ◽  
pp. 195-208
Author(s):  
Sayantan Dutta ◽  
Ayan Banerjee

Image fusion has gained huge popularity in the field of medical and satellite imaging for image analysis. The lack of usages of image fusion is due to a deficiency of suitable optimization techniques and dedicated hardware. In recent days WOA (whale optimization algorithm) is gaining popularity. Like another straightforward nature-inspired algorithm, WOA has some problems in its searching process. In this paper, we have tried to improve the WOA algorithm by modifying the WOA algorithm. This MWOA (modified whale optimization algorithm) algorithm is amalgamed with LSA (local search algorithm) and BA (bat algorithm). The LSA algorithm helps the system to be faster, and BA algorithm helps to increase the accuracy of the system. This optimization algorithm is checked using MATLAB R2018b. Simulated using ModelSim, and the synthesizing is done using Xilinx Vivado 18.2 synthesis tool. The outcome of the simulation result and the synthesis result outshine other metaheuristic optimization algorithms.


Sign in / Sign up

Export Citation Format

Share Document