scholarly journals The Uptake Characteristics of Prussian-Blue Nanoparticles for Platinum-Group Metal and Molybdenum Ions in a Nitric Acid Solution Toward Application for the Recovery of Precious Metals from Nuclear and Electronic Wastes

Author(s):  
Shinta Watanabe ◽  
Yusuke Inaba ◽  
Miki Harigai ◽  
Kenji Takeshita ◽  
Jun Onoe

Abstract We have examined the uptake mechanisms of platinum-group-metals (PGMs) and molybdenum (Mo) ions into PBNPs in a nitric acid solution for 24-h sorption test, using inductively coupled plasma atomic emission spectroscopy, powder XRD, and UV-Vis-NIR spectroscopy in combination with first-principles calculations, and revealed that the Ru4+ and Pd2+ ions are incorporated into PBNPs by substitution with Fe3+ and Fe2+ ions of the PB framework, respectively, whereas the Rh3+ ion is incorporated into PBNPs by substitution mainly with Fe3+ and minorly with Fe2+ ion, and Mo6+ ion is incorporated into PBNPs by substitution with both Fe2+ and Fe3+ ions, with maintaining the crystal structure before and after the sorption test. Assuming that the amount of Fe elusion is equal to that of PGMs/Mo substitution, the substitution efficiency is estimated to be 39.0% for Ru, 47.8% for Rh, 87% for Pd, and 17.1% for Mo6+. This implies that 0.13 g of Ru, 0.16 g of Rh, 0.30 g of Pd, and 0.107 g of Mo can be recovered by using 1g PBNPs with a chemical form of KFe(III)[Fe(II)(CN)6].

RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20701-20707
Author(s):  
Jun Onoe ◽  
Shinta Watanabe ◽  
Hideki Masuda ◽  
Yusuke Inaba ◽  
Miki Harigai ◽  
...  

The uptake mechanism of palladium ions into Prussian-blue nanoparticles in a nitric acid solution was investigated via high-resolution TEM, ICP-AES, powder XRD, and UV-Vis-NIR spectroscopy in combination with first principles calculations.


2018 ◽  
Author(s):  
Danila Barskiy ◽  
Lucia Ke ◽  
Xingyang Li ◽  
Vincent Stevenson ◽  
Nevin Widarman ◽  
...  

<p>Hyperpolarization techniques based on the use of parahydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of parahydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals and their administration in vivo should be avoided.</p> <p><br></p><p>Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 seconds) Ir-based catalyst capture by metal scavenging agents can produce pure parahydrogen-based hyperpolarized contrast agents as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.</p>


2018 ◽  
Author(s):  
Danila Barskiy ◽  
Lucia Ke ◽  
Xingyang Li ◽  
Vincent Stevenson ◽  
Nevin Widarman ◽  
...  

<p>Hyperpolarization techniques based on the use of parahydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of parahydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals and their administration in vivo should be avoided.</p> <p><br></p><p>Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 seconds) Ir-based catalyst capture by metal scavenging agents can produce pure parahydrogen-based hyperpolarized contrast agents as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.</p>


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25314-25333
Author(s):  
Mai A. Khaled ◽  
Mohamed A. Ismail ◽  
Ahmed. A. El-Hossiany ◽  
Abd El-Aziz S. Fouda

This study targets the investigation of three pyrimidine derivatives (MA-1230, MA-1231, MA-1232) for the prevention of corrosion on copper in 1 M HNO3via weight loss (WL), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) techniques.


2015 ◽  
Vol 53 (9) ◽  
pp. 1371-1379 ◽  
Author(s):  
Chiaki Kato ◽  
Yasuhiro Ishijima ◽  
Fumiyoshi Ueno ◽  
Masahiro Yamamoto

Sign in / Sign up

Export Citation Format

Share Document