scholarly journals The use of Nile Tilapia skin as an occlusive biological dressing for palatal wound healing: A case series

2021 ◽  
Vol 10 (8) ◽  
pp. e24010817146
Author(s):  
Gustavo Gonçalves do Prado Manfredi ◽  
Matheus Volz Cardoso ◽  
Vitor de Toledo Stuani ◽  
Rafael Ferreira ◽  
Mariana Schutzer Ragghianti Zangrando ◽  
...  

Recently, the use of type I collagen obtained from Nile Tilapia (Oreochromis niloticus) was proposed for the treatment of second and third-degree burning lesions and diabetic ulcers due to its occlusive and healing properties. The aim of this report is to describe the use of Nile tilapia skin as an occlusive barrier to protect palatal wounds after the removal of free autogenous soft tissue grafts. Two patients with a deficiency in the height of keratinized mucosa were indicated for treatment with free gingival grafts. The palatal donor area was covered with a Nile tilapia skin, stabilized by sutures. Seven days after surgery, patients returned for post-operative care. Patients’ reported outcomes were investigated by the use of a visual analogue scale and included pain, discomfort, impact on chewing and speaking. Analgesics consumption was also recorded. Standardized photographs were obtained to monitor wound healing. Patients were followed up for 30 days. Patients reported reduced pain levels, with low consumption of analgesics during the first week after surgery. No discomfort or difficulty in chewing or speaking was reported. No complications such as hemorrhage or edema were observed. These findings suggest that the Nile Tilapia skin may be an interesting alternative as an occlusive biological dressing in palatal wounds harvest of free gingival grafts.

2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Author(s):  
Philip Peter Roessler ◽  
Turgay Efe ◽  
Dieter Christian Wirtz ◽  
Frank Alexander Schildberg

AbstractCartilage regeneration with cell-free matrices has developed from matrix-associated autologous cartilage cell transplantation (MACT) over ten years ago. Adjustments to the legal framework and higher hurdles for cell therapy have led to the procedures being established as an independent alternative to MACT. These procedures, which can be classified as matrix-induced autologous cartilage regeneration (MACR), all rely on the chemotactic stimulus of a cross-linked matrix, which mostly consists of collagens. Given the example of a commercially available type I collagen hydrogel, the state of clinical experience with MACR shall be summarized and an outlook on the development of the method shall be provided. It has been demonstrated in the clinical case series summarized here over the past few years that the use of the matrix is not only safe but also yields good clinical-functional and MR-tomographic results for both small (~ 10 mm) and large (> 10 mm) focal cartilage lesions. Depending on the size of the defect, MACR with a collagen type I matrix plays an important role as an alternative treatment method, in direct competition with both: microfracture and MACT.


2020 ◽  
Author(s):  
N Pearman ◽  
SR Moxon ◽  
Susan Carnachan ◽  
ME Cooke ◽  
EI Nep ◽  
...  

© 2019 Elsevier Ltd The Malvaceae family is a group of flowering plants that include approximately 244 genera, and 4225 species. Grewia mollis, and Hoheria populnea (lacebark), are examples of the Malvaceae family that are used in traditional medicine. For this study polysaccharide samples were extracted from the inner bark of Grewia mollis (unmodified (GG) and destarched grewia gum (GGDS)) and from the leaves of Hoheria populnea (lacebark polysaccharide (LB)). Wound healing properties of grewia gum and lacebark polysaccharides were investigated using 3T3 fibroblast cells cultured in supplemented DMEM. Deposition of collagen using van Gieson's stain, expression of the COL1A1 gene which encodes type I collagen using quantitative PCR, and chemotaxis using a scratch plate assay were analysed following treatment of cells with the test polysaccharides. Quantitative PCR results indicated that all three polysaccharides increased the levels of COL1A1 mRNA, with GG showing the greatest fold change. Histological staining also indicated that the fibroblasts treated with GG deposited more collagen than control cells. Additionally, scratch assay data indicated that simulated cell ‘wounds’ treated with each polysaccharide showed increased wound closure rate over a 36 h period post treatment, with GG exhibiting the greatest effect on wound closure. Analysis of the Malvaceae derived polysaccharides indicates that they could have a positive effect on mechanisms that are integral to wound healing, potentially providing greater scientific understanding behind their use in traditional medicine.


Author(s):  
Letícia Fuganti CAMPOS ◽  
Eliane TAGLIARI ◽  
Thais Andrade Costa CASAGRANDE ◽  
Lúcia de NORONHA ◽  
Antônio Carlos L. CAMPOS ◽  
...  

ABSTRACT Background: Chronic wounds in patients with Diabetes Mellitus often become incurable due to prolonged and excessive production of inflammatory cytokines. The use of probiotics modifies the intestinal microbiota and modulates inflammatory reactions. Aim: To evaluate the influence of perioperative supplementation with probiotics in the cutaneous healing process in diabetic rats. Methods: Forty-six rats were divided into four groups (C3, P3, C10, P10) according to the treatment (P=probiotic or C=control, both orally administered) and day of euthanasia, 3rd or 10th postoperative days. All rats were induced to Diabetes Mellitus 72 h before starting the experiment with alloxan. Supplementation was initiated five days before the incision and maintained until euthanasia. Scalpel incision was guided by a 2x2 cm mold and the wounds were left to heal per second-intention. The wounds were digitally measured. Collagen densitometry was done with Picrosirius Red staining. Histological parameters were analyzed by staining by H&E. Results: The contraction of the wound was faster in the P10 group which resulted in a smaller scar area (p=0.011). There was an increase in type I collagen deposition from the 3rd to the 10th postoperative day in the probiotic groups (p=0.016), which did not occur in the control group (p=0.487). The histological analysis showed a better degree of healing in the P10 group (p=0.005), with fewer polymorphonuclear (p<0.001) and more neovessels (p=0.001). Conclusions: Perioperative supplementation of probiotics stimulates skin wound healing in diabetic rats, possibly due to attenuation of the inflammatory response and increased neovascularization and type I collagen deposition.


1991 ◽  
Vol 2 (12) ◽  
pp. 1035-1044 ◽  
Author(s):  
M V Agrez ◽  
R C Bates ◽  
A W Boyd ◽  
G F Burns

Integrins are a family of cell-surface receptors intimately involved in the interactions of cells with their extracellular matrix. These receptors comprise an alpha and beta subunit in noncovalent association and many have been shown to recognize and bind an arginine-glycine-aspartate (RGD) sequence contained within their specific extracellular matrix ligand. Fibroblasts express integrin receptors belonging to two major subfamilies. Some of the members within the subfamily defined by beta 1 (VLA) are receptors for collagen but, perhaps surprisingly, the other major subfamily of integrins on fibroblasts--that defined by the alpha chain of the vitronectin receptor, alpha v--all appear to bind primarily vitronectin and/or fibronectin. In the present study we show that RGD-containing peptides expose cryptic binding sites on the alpha v-associated integrins enabling them to function as collagen receptors. The addition of RGD-containing peptides to fibroblasts cultured on type I collagen induced dramatic cell elongation and, when the cells were contained within collagen matrices, the peptides induced marked contraction of the gels. These processes were inhibited by Fab fragments of a monoclonal antibody against an alpha v integrin. Also, alpha v-associated integrins from cell lysates bound to collagen I affinity columns in the presence, but not in the absence, of RGD-containing peptides. These data suggest a novel regulatory control for integrin function. In addition, because the cryptic collagen receptors were shown to be implicated in the contraction of collagen gels, the generation of such binding forces suggests that this may be the major biological role for these integrins in processes such as wound healing.


2004 ◽  
Vol 83 (7) ◽  
pp. 546-551 ◽  
Author(s):  
T. Ohira ◽  
F. Myokai ◽  
N. Shiomi ◽  
K. Yamashiro ◽  
T. Yamamoto ◽  
...  

Periodontal healing requires the participation of regulatory molecules, cells, and scaffold or matrix. Here, we hypothesized that a certain set of genes is expressed in alveolar bone wound healing. Reciprocal subtraction gave 400 clones from the injured alveolar bone of Wistar rats. Identification of 34 genes and analysis of their expression in injured tissue revealed several clusters of unique gene regulation patterns, including the up-regulation at 1 wk of cytochrome c oxidase regulating electron transfer and energy metabolism, presumably occurring at the site of inflammation; up-regulation at 2.5 wks of pro-α-2 type I collagen involving the formation of a connective tissue structure; and up-regulation at 1 and 2 wks and down-regulation at 2.5 and 4 wks of ubiquitin carboxyl-terminal hydrolase l3 involving cell cycle, DNA repair, and stress response. The differential expression of genes may be associated with the processes of inflammation, wound contraction, and formation of a connective tissue structure.


RSC Advances ◽  
2015 ◽  
Vol 5 (119) ◽  
pp. 98653-98665 ◽  
Author(s):  
Tapas Mitra ◽  
Piyali Jana Manna ◽  
S. T. K. Raja ◽  
A. Gnanamani ◽  
P. P. Kundu

We prepare a highly stabilized nano graphene oxide functionalized with type I collagen to make a 3D scaffold as a novel platform for better tissue engineering research..


Sign in / Sign up

Export Citation Format

Share Document