scholarly journals Evaluation of fish skin as a biological dressing for metacarpal wounds in donkeys

2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Ahmed Ibrahim ◽  
Mahmoud Soliman ◽  
Saber Kotb ◽  
Magda M. Ali

Abstract Background The use of biological dressings has recently emerged in the management of burns and wounds. The aim of the present study was to evaluate the Nile tilapia skin as a biological dressing for full-thickness cutaneous metacarpal wounds in donkeys. The study was conducted on nine clinically healthy donkeys (n = 9). Here, fish skin dressings were obtained from fresh Nile tilapia (Oreochromis niloticus and sterilized by immersion in silver nanoparticles (AgNPs) solution for 5 min, with no change in collagen content. Bilateral, circular full-thickness excisional skin wounds (2 cm in diameter) were created on the dorsal aspect of the mid-metacarpals of each donkey. Wounds on the right metacarpals (treated wounds, n = 9) were dressed with sterile fish skins, while wounds on the left metacarpals (control wounds, n = 9) were dressed with sterile non-adherent dressing pads without any topical applications. Wound dressings were changed weekly. Wounds were evaluated microbiologically, grossly, and histologically on days 7, 14, and 21 post-wound inductions. Results Fish skin-dressed wounds showed a significant (P < 0.0001) reduction in microbial counts (Total viable bacterial count, Staphylococcal count, and Coliform count), a significant (P < 0.0001) decrease in the wound size, and a significant reduction (P < 0.0001) in the epithelial gap compared to the untreated wounds. No frequent dressing changes were needed. Conclusions Fish skin dressing accelerated the wound healing process and efficiently inhibited the local microbial activity and exuberant granulation tissue formation suggesting its reliable and promising application for metacarpal wounds of donkeys.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2554
Author(s):  
Marek Konop ◽  
Anna K. Laskowska ◽  
Mateusz Rybka ◽  
Ewa Kłodzińska ◽  
Dorota Sulejczak ◽  
...  

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


2021 ◽  
Vol 18 ◽  
Author(s):  
Xinchi Feng ◽  
Jinsong Hao

: Chronic wounds remain a significant public problem and the development of wound treatments has been a research focus for the past few decades. Despite advances in the products derived from endogenous substances involved in a wound healing process (e.g. growth factors, stem cells, and extracellular matrix), effective and safe wound therapeutics are still limited. There is an unmet need to develop new therapeutics. Various new pathways and targets have been identified and could become a molecular target in designing novel wound agents. Importantly, many existing drugs that target these newly identified pathways could be repositioned for wound therapy, which will facilitate fast translation of research findings to clinical applications. This review discusses the newly identified pathways/targets and their potential uses in the development of wound therapeutics. Some herbs and amphibian skins have been traditionally used for wound repairs and their active ingredients have been found to act in these new pathways. Hence, screening these natural products for novel wound therapeutics remains a viable approach. The outcomes of wound care using natural wound therapeutics could be improved if we can better understand their cellular and molecular mechanisms and fabricate them in appropriate formulations, such as using novel wound dressings and nano-engineered materials. Therefore, we also provide an update on the advances in the wound therapeutics from natural sources. Overall, this review offers new insights into novel wound therapeutics.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 702
Author(s):  
Seyyed-Mojtaba Mousavi ◽  
Zohre Mousavi Nejad ◽  
Seyyed Alireza Hashemi ◽  
Marjan Salari ◽  
Ahmad Gholami ◽  
...  

Despite the advances that have been achieved in developing wound dressings to date, wound healing still remains a challenge in the healthcare system. None of the wound dressings currently used clinically can mimic all the properties of normal and healthy skin. Electrospinning has gained remarkable attention in wound healing applications because of its excellent ability to form nanostructures similar to natural extracellular matrix (ECM). Electrospun dressing accelerates the wound healing process by transferring drugs or active agents to the wound site sooner. This review provides a concise overview of the recent developments in bioactive electrospun dressings, which are effective in treating acute and chronic wounds and can successfully heal the wound. We also discuss bioactive agents used to incorporate electrospun wound dressings to improve their therapeutic potential in wound healing. In addition, here we present commercial dressings loaded with bioactive agents with a comparison between their features and capabilities. Furthermore, we discuss challenges and promises and offer suggestions for future research on bioactive agent-loaded nanofiber membranes to guide future researchers in designing more effective dressing for wound healing and skin regeneration.


Author(s):  
Ahmed G. Hegazi ◽  
Faiz M. Al Guthami ◽  
Mohamed H. Basiouny ◽  
Ahmed F.M. Al Gethami

Honey has been documented as the oldest traditional medicine. It has been effective in suppressing inflammation, wound repair enhancer, and rapid autolytic debridement. The aim of this investigation was to evaluate the role of Saudi Arabia Talh honey (Acacia nilotica) dressing as a good alternative in care of diabetic foot (DFU) healing activity for twenty patients, wound total bacterial count, and serum cytokines levels (IFN-γ, IL-1, and IL-6). The results showed that Talh honey stimulates the wound healing process, broad-spectrum antibacterial activity, and reduction in the proinflammatory cytokines IFN-γ, IL-1, and IL-6 levels. It could be concluded that Talh honey bioactivities enhance wound healing by promoting tissue growth leading to wound repair, antibacterial, and reduction of inflammation.


2018 ◽  
Vol 315 (1) ◽  
pp. H71-H79 ◽  
Author(s):  
Alan J. Mouton ◽  
Osvaldo J. Rivera ◽  
Merry L. Lindsey

After myocardial infarction, remodeling of the left ventricle involves a wound-healing orchestra involving a variety of cell types. In order for wound healing to be optimal, appropriate communication must occur; these cells all need to come in at the right time, be activated at the right time in the right amount, and know when to exit at the right time. When this occurs, a new homeostasis is obtained within the infarct, such that infarct scar size and quality are sufficient to maintain left ventricular size and shape. The ideal scenario does not always occur in reality. Often, miscommunication can occur between infarct and remote spaces, across the temporal wound-healing spectrum, and across organs. When miscommunication occurs, adverse remodeling can progress to heart failure. This review discusses current knowledge gaps and recent development of the roles of inflammation and the extracellular matrix in myocardial infarction remodeling. In particular, the macrophage is one cell type that provides direct and indirect regulation of both the inflammatory and scar-forming responses. We summarize current research efforts focused on identifying biomarker indicators that reflect the status of each component of the wound-healing process to better predict outcomes.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2407 ◽  
Author(s):  
Alexa-Maria Croitoru ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
Natalia Mihailescu ◽  
Ecaterina Andronescu ◽  
...  

The interest in wound healing characteristics of bioactive constituents and therapeutic agents, especially natural compounds, is increasing because of their therapeutic properties, cost-effectiveness, and few adverse effects. Lately, nanocarriers as a drug delivery system have been actively investigated and applied in medical and therapeutic applications. In recent decades, researchers have investigated the incorporation of natural or synthetic substances into novel bioactive electrospun nanofibrous architectures produced by the electrospinning method for skin substitutes. Therefore, the development of nanotechnology in the area of dressings that could provide higher performance and a synergistic effect for wound healing is needed. Natural compounds with antimicrobial, antibacterial, and anti-inflammatory activity in combination with nanostructured fibers represent a future approach due to the increased wound healing process and regeneration of the lost tissue. This paper presents different approaches in producing electrospun nanofibers, highlighting the electrospinning process used in fabricating innovative wound dressings that are able to release natural and/or synthetic substances in a controlled way, thus enhancing the healing process.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2286 ◽  
Author(s):  
Sibusiso Alven ◽  
Xhamla Nqoro ◽  
Blessing Atim Aderibigbe

Some of the currently used wound dressings have interesting features such as excellent porosity, good water-absorbing capacity, moderate water vapor transmission rate, high drug loading efficiency, and good capability to provide a moist environment, but they are limited in terms of antimicrobial properties. Their inability to protect the wound from microbial invasion results in wound exposure to microbial infections, resulting in a delayed wound healing process. Furthermore, some wound dressings are loaded with synthetic antibiotics that can cause adverse side effects on the patients. Natural-based compounds exhibit unique features such as good biocompatibility, reduced toxicity, etc. Curcumin, one such natural-based compound, has demonstrated several biological activities such as anticancer, antibacterial and antioxidant properties. Its good antibacterial and antioxidant activity make it beneficial for the treatment of wounds. Several researchers have developed different types of polymer-based wound dressings which were loaded with curcumin. These wound dressings displayed excellent features such as good biocompatibility, induction of skin regeneration, accelerated wound healing processes and excellent antioxidant and antibacterial activity. This review will be focused on the in vitro and in vivo therapeutic outcomes of wound dressings loaded with curcumin.


2008 ◽  
Vol 57 ◽  
pp. 80-87 ◽  
Author(s):  
Stéphanie Pasche ◽  
Silvia Angeloni ◽  
Réal Ischer ◽  
Martha Liley ◽  
Jean Luprano ◽  
...  

Continuous health monitoring often requires hospitalization, which can become an expensive and inconvenient choice for the patient. In this perspective, wearable sensors that allow in situ biosensing constitute a very promising technology. This work aims to develop immunosensors for continuous monitoring of the wound healing process, based on pH changes, as well as on the concentrations of inflammatory proteins such as the C-reactive protein (CRP). Sensing principles include the use of responsive hydrogels that swell in response to changes in the surroundings, and the use of functional surfaces that specifically recognize the target protein. The detection principle is based on an optical signal, using the evanescent field of light propagating along a waveguide, probing refractive index changes. An optical sensing system that can be integrated in a wound dressing patch has been designed, including a white light source (LED), and a spectrometer for detection. The sensor was successfully tested in the laboratory with biological samples (blood serum), demonstrating reversible pH measurements between pH 6-8, and detection of changes in the concentration of CRP between 1 and 100 μg/ml. The sensor will later be integrated into wound dressings or bandages, forming a sensing patch that is connected via optical fibres and electrical wires to the detection system and power supply. This novel technology will be particularly valuable in applications such as the supervision of skin grafts and ulcer treatments.


Sign in / Sign up

Export Citation Format

Share Document