tidal amplification
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
pp. SP523-2021-85
Author(s):  
Ángel Puga-Bernabéu ◽  
Juan Carlos Braga ◽  
Julio Aguirre ◽  
José Manuel Martín

AbstractThe approximately 350 m-thick stratigraphic succession of the Zagra Strait records an important oceanographic phase of basin interconnection between the Atlantic Ocean (Guadalquivir Basin) and the Mediterranean Sea through the Betic Cordillera (southern Spain) during the early Tortonian. The Zagra Strait developed as a narrow structurally-controlled marine corridor. The sedimentary dynamics of the Zagra Strait was interpreted from the sedimentological features observed in six sections at well-exposed outcrops. Large-scale (>10 m high) compound and compound-dune complexes moved parallel to the strait margins under strong tidal currents generated by tidal amplification at the strait entrance and exit. Dune distribution can be divided in three sectors with different palaeocurrent migration, lithological and topographical characteristics. The northern and central sectors were separated by a deep depression (>75 m water depth) where tidal currents were weaker and dunes were not generated. The southern sector records a relative decrease in current strength compared with the northern and central sectors, and a significant increase in the bioclastic content in the sediment. Terrigenous content generally increases towards the strait margins, and reciprocally, carbonates towards its axis. The closure of the Zagra Strait resulted from tectonic uplift of that part of the Betic Cordillera before the late Tortonian.


2021 ◽  
Vol 29 (3) ◽  
pp. 215-228
Author(s):  
Agung Dwi Purnomo ◽  
Muh Aris Marfai ◽  
Semeidi Husrin

This research aims to identify the effect of tides on groundwater level fluctuation in Gili Ketapang Island by using a combination of field monitoring and hydrodynamic modeling. Groundwater data were collected from 5 July to 17 August 2018 from two wells monitoring, while the hydrodynamic model was adopted to identify sea-level conditions. The result explains the sea level around the island is similar among extremely strong correlations between the points. The hydrodynamic model proves a standing wave due to tidal amplification in Madura Strait waters. The effect of tides on the groundwater level characterized by decreasing in amplitudes and time lags as increasing the distance from the coast.


2021 ◽  
Author(s):  
Valentin Zuchuat ◽  
Elisabeth Steel ◽  
Ryan Mulligan ◽  
Daniel Collins ◽  
J.A. Mattias Green

<p>The physiography (geometry and bathymetry) of a basin and its latitude are the primary parameters that dictate the tidal dynamics in shoreline–shelf systems. Understanding the impact that changes in physiography have on tides allows researchers to 1) improve interpretations of historical sedimentary processes in shallow-marine basins, and 2) better predict potential variations in tidal dynamics in response to an anthropogenic-driven relative sea level change.</p><p>Here, we present an analysis of numerical modelling of tidal propagation in the Upper Jurassic Sundance and Curtis Seas demontrating that basin-scale amplification and dampening of tides occurred in different palaeophysiographic configurations, and more localised amplification relating to tidal harmonics occurred in certain physiographic scenarios. Consequently, palaeophysiography was the primary control on both the magnitude and location of tidal amplification, flow speed, and bed shear stress, whereas secondary controls were initial tidal forcing and bottom drag coefficient.</p><p>Simulation results for the palaeophysiography with a 600 m depth at the mouth of the system suggest a distribution of sedimentary facies comparable to those documented in the Upper Jurassic lower Curtis Formation, apart from the innermost Curtis Sea, near to the palaeoshoreline. Sediments potentially supplied by aeolian processes during regression and increased aridity were likely reworked by tides during a subsequent a transgression as the climate became more humid. The palaeophysiography with a 600 m depth at the mouth of the system can therefore be considered a realistic palaeophysiographic configuration for the Sundance and Curtis Seas given the similarities that exist between the predicted distribution of sedimentary facies and their actual distribution in the lower Curtis Formation. In this palaeophysiography, the Sundance Sea and the Curtis Sea would have thus attained a maximum depth of ~240 m and 40-45 m, respectively. In this context, the simulated tidal range in the Curtis Sea would have reached 2.60 m, which would classify the Curtis Sea as a meso-tidal system (2x 1.30 m tidal amplitude).</p><p>Finally, using change in palaeophysiographic configuration as a proxy for relative sea-level variations revealed the non-uniqueness (sensu Burgess & Prince, 2015) of sedimentary successions deposited in tide-dominated basin, given that tidal amplification in the system was controlled by palaeophysiographic configuration: one specific succession could be the product of several, equally-valid relative sea-level histories. Reciprocally, the impact of relative sea-level change on different successions is non-unique, since local tidal harmonics and the characteristics of coeval deposition may vary significantly during relative sea level changes.</p>


2021 ◽  
Vol 7 (10) ◽  
pp. eabe2412
Author(s):  
Sida Li ◽  
Thomas Wahl ◽  
Stefan A. Talke ◽  
David A. Jay ◽  
Philip M. Orton ◽  
...  

Nuisance flooding (NF) is defined as minor, nondestructive flooding that causes substantial, accumulating socioeconomic impacts to coastal communities. While sea-level rise is the main driver for the observed increase in NF events in the United States, we show here that secular changes in tides also contribute. An analysis of 40 tidal gauge records from U.S. coasts finds that, at 18 locations, NF increased due to tidal amplification, while decreases in tidal range suppressed NF at 11 locations. Estuaries show the largest changes in NF attributable to tide changes, and these can often be traced to anthropogenic alterations. Limited long-term measurements from estuaries suggest that the effects of evolving tides are more widespread than the locations considered here. The total number of NF days caused by tidal changes has increased at an exponential rate since 1950, adding ~27% to the total number of NF events observed in 2019 across locations with tidal amplification.


Author(s):  
Danial Khojasteh ◽  
Steve Hottinger ◽  
Stefan Felder ◽  
Giovanni De Cesare ◽  
Valentin Heimhuber ◽  
...  

Worldwide, hundreds of millions of people who live on or near estuarine environments are vulnerable to sea level rise (SLR). Using clustering techniques and moving beyond static models and case studies, this study used a large ensemble of idealised estuary models of varying scale, geometry, level of entrance constriction, and SLR scenarios. It was found that tidal forcing, degree of entrance restriction, and estuarine length can primarily control the tidal dynamics of prismatic estuaries under SLR. Further, restricting an entrance can be presented as a potential solution to offset SLR induced tidal amplification if the associated impacts on entrance stability, navigation, and flooding are considered.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/vOptOAbqN3U


2020 ◽  
Author(s):  
Ingrid Anell ◽  
Valentin Zuchuat ◽  
Anna Daniela Röhnert ◽  
Aleksandra Smyrak‐Sikora ◽  
Simon Buckley ◽  
...  

CATENA ◽  
2020 ◽  
Vol 187 ◽  
pp. 104312 ◽  
Author(s):  
Edwin J. Bomer ◽  
Carol A. Wilson ◽  
Richard P. Hale ◽  
Abu Naser Mohsin Hossain ◽  
F.M. Arifur Rahman

2020 ◽  
Author(s):  
Mariane Candido ◽  
Joice Cagliari ◽  
Ernesto Luiz Lavina

<p>The intracratonic Paraná Basin and its western extension - Chaco-Paraná Basin - are located in the south-central portion of South America and cover an area of about  ~1.8 million km<sup>2</sup>, including portions in Brazil, Argentina, Uruguay, and Paraguay. The Early Permian epicontinental sea was shallow and likely connected with the Panthalassa in the southern portion of Uruguay (Lavina, 1992). The transgressive sedimentary succession of the Guatá Group is composed of coastal plain and shallow marine deposits (Rio Bonito Formation), in complex associations due to base level fluctuations and irregular deglaciation paleotopography, and offshore-transitional deposits (Palermo Formation) (Lavina and Lopes, 1987). The Rio Bonito Formation is mostly preserved within paleovalleys carved by glaciers and tectonic. The tidal-influence in this formation occurs throughout the succession and are mainly characterized by medium- to coarse-grained arkosic and quartz sandstones with uni- and bidirectional cross-bedding, herring-bone cross-bedding, tidal bundles, reactivation surfaces, mud drapes, and double mud drapes (Fritzen et al., 2019; Lopes and Lavina, 2001). Besides the tidal sedimentological aspects, the conditions that governed tide in this epicontinental sea are poorly understood. In this work, we present a theoretical perspective on the behavior of tides in the Paraná Basin epicontinental sea during the Early Permian. Mathematical models were applied to test the existence of amphidromic points in the basin, to verify the possibility of resonance, as well as to test the tidal amplification inside two paleovalleys. The obtained results were compared to Hudson Bay, considered here a modern analog. According to the paleogeography, paleolatitude (Southern Hemisphere), depositional records and insights from the modern analog, the studied Early Permian epicontinental sea likely had bear more than one clockwise-rotation amphidromic system. Resonant effects may also have affected circulation, especially at sea depth below 100 m. In the simulated scenarios, tidal amplification in both valleys was variable but concentrated between micro to mesotidal amplitudes. This is the first contribution to the understanding of the tidal behavior of the Early Permian epicontinental sea.</p><p> </p><p>References:</p><p>Fritzen, M.R., Cagliari, J., Candido, M., Lavina, E.L., 2019. Tidal bar cyclicity record in the Lower Permian (Rio Bonito Formation of the Paraná Basin). Sedimentary Geology 381, 76-83.</p><p>Lavina, E.L., 1992. Geologia sedimentar e paleogeografia do Neopermiano e Eotriassico (intervalo Kanzaniano - Scythiano) da Bacia do Parana. Ph.D. Thesis, UFRGS University.</p><p>Lavina, E.L., Lopes, R.C., 1987. A Transgressão Marinha do Permiano Inferior e a Evolução Paleogeográfica do Supergrupo Tubarão no Estado do Rio Grande do Sul. Paula-Coutiana 1, 51-103.</p><p>Lopes, R.C., Lavina, E.L., 2001. Estratigrafia de sequências nas Formações Rio Bonito e Palermo (Bacia do Paraná), na região carbonífera do Jacuí, Rio Grande do Sul, in: Severiano Ribeiro, H.J.P. (Ed.), Estratigrafia de sequências: fundamentos e aplicações. Edunisinos, São Leopoldo, pp. 391-419.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sepehr Eslami ◽  
Piet Hoekstra ◽  
Nam Nguyen Trung ◽  
Sameh Ahmed Kantoush ◽  
Doan Van Binh ◽  
...  

AbstractNatural resources of the Mekong River are essential to livelihood of tens of millions of people. Previous studies highlighted that upstream hydro-infrastructure developments impact flow regime, sediment and nutrient transport, bed and bank stability, fish productivity, biodiversity and biology of the basin. Here, we show that tidal amplification and saline water intrusion in the Mekong Delta develop with alarming paces. While offshore M2 tidal amplitude increases by 1.2–2 mm yr−1 due to sea level rise, tidal amplitude within the delta is increasing by 2 cm yr−1 and salinity in the channels is increasing by 0.2–0.5 PSU yr−1. We relate these changes to 2–3 m bed level incisions in response to sediment starvation, caused by reduced upstream sediment supply and downstream sand mining, which seems to be four times more than previous estimates. The observed trends cannot be explained by deeper channels due to relative sea level rise; while climate change poses grave natural hazards in the coming decades, anthropogenic forces drive short-term trends that already outstrip climate change effects. Considering the detrimental trends identified, it is imperative that the Mekong basin governments converge to effective transboundary management of the natural resources, before irreversible damage is made to the Mekong and its population.


Sign in / Sign up

Export Citation Format

Share Document