nucleotides and nucleosides
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 5)

H-INDEX

24
(FIVE YEARS 2)

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu Han ◽  
Nianzhi Jiao ◽  
Yao Zhang ◽  
Fan Zhang ◽  
Chen He ◽  
...  

Abstract Background Phytoplankton blooms are frequent events in coastal areas and increase the production of organic matter that initially shapes the growth of opportunistic heterotrophic bacteria. However, it is unclear how these opportunists are involved in the transformation of dissolved organic matter (DOM) when blooms occur and the subsequent impacts on biogeochemical cycles. Results We used a combination of genomic, proteomic, and metabolomic approaches to study bacterial diversity, genome traits, and metabolic responses to assess the source and lability of DOM in a spring coastal bloom of Akashiwo sanguinea. We identified molecules that significantly increased during bloom development, predominantly belonging to amino acids, dipeptides, lipids, nucleotides, and nucleosides. The opportunistic members of the bacterial genera Polaribacter, Lentibacter, and Litoricola represented a significant proportion of the free-living and particle-associated bacterial assemblages during the stationary phase of the bloom. Polaribacter marinivivus, Lentibacter algarum, and Litoricola marina were isolated and their genomes exhibited streamlining characterized by small genome size and low GC content and non-coding densities, as well as a smaller number of transporters and peptidases compared to closely related species. However, the core proteomes identified house-keeping functions, such as various substrate transporters, peptidases, motility, chemotaxis, and antioxidants, in response to bloom-derived DOM. We observed a unique metabolic signature for the three species in the utilization of multiple dissolved organic nitrogen compounds. The metabolomic data showed that amino acids and dipeptides (such as isoleucine and proline) were preferentially taken up by P. marinivivus and L. algarum, whereas nucleotides and nucleosides (such as adenosine and purine) were preferentially selected by L. marina. Conclusions The results suggest that the enriched DOM in stationary phase of phytoplankton bloom is a result of ammonium depletion. This environment drives genomic streamlining of opportunistic bacteria to exploit their preferred nitrogen-containing compounds and maintain nutrient cycling.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 689
Author(s):  
Henryk Straube ◽  
Claus-Peter Witte ◽  
Marco Herde

Nucleotides fulfill many essential functions in plants. Compared to non-plant systems, these hydrophilic metabolites have not been adequately investigated in plants, especially the less abundant nucleotide species such as deoxyribonucleotides and modified or damaged nucleotides. Until recently, this was mainly due to a lack of adequate methods for in-depth analysis of nucleotides and nucleosides in plants. In this review, we focus on the current state-of-the-art of nucleotide analysis in plants with liquid chromatography coupled to mass spectrometry and describe recent major advances. Tissue disruption, quenching, liquid–liquid and solid-phase extraction, chromatographic strategies, and peculiarities of nucleotides and nucleosides in mass spectrometry are covered. We describe how the different steps of the analytical workflow influence each other, highlight the specific challenges of nucleotide analysis, and outline promising future developments. The metabolite matrix of plants is particularly complex. Therefore, it is likely that nucleotide analysis methods that work for plants can be applied to other organisms as well. Although this review focuses on plants, we also discuss advances in nucleotide analysis from non-plant systems to provide an overview of the analytical techniques available for this challenging class of metabolites.


RSC Advances ◽  
2021 ◽  
Vol 11 (44) ◽  
pp. 27369-27380
Author(s):  
R. Rama Suresh ◽  
Russell B. Poe ◽  
Baorui Lin ◽  
Kexin Lv ◽  
Ryan G. Campbell ◽  
...  

Enabling efficient synthesis of rigid methanocarba nucleotides and nucleosides as clinically promising purinergic receptor ligands.


2019 ◽  
Vol 15 ◽  
pp. 811-817 ◽  
Author(s):  
Karen J Ardila-Fierro ◽  
Andrij Pich ◽  
Marc Spehr ◽  
José G Hernández ◽  
Carsten Bolm

In recent times, many biologically relevant building blocks such as amino acids, peptides, saccharides, nucleotides and nucleosides, etc. have been prepared by mechanochemical synthesis. However, mechanosynthesis of lipids by ball milling techniques has remained essentially unexplored. In this work, a multistep synthetic route to access mono- and diacylglycerol derivatives by mechanochemistry has been realized, including the synthesis of diacylglycerol-coumarin conjugates.


2019 ◽  
Vol 205 ◽  
pp. 16-24 ◽  
Author(s):  
Anna Lisa Giuliani ◽  
Alba Clara Sarti ◽  
Francesco Di Virgilio

Sign in / Sign up

Export Citation Format

Share Document