ablative fractional laser
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 44)

H-INDEX

20
(FIVE YEARS 3)

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6326
Author(s):  
Uffe Høgh Olesen ◽  
Martin Wiinberg ◽  
Catharina Margrethe Lerche ◽  
Ditte Elisabeth Jæhger ◽  
Thomas Lars Andresen ◽  
...  

The efficacy of anti-programmedcelldeath1therapy (aPD-1), which was recently approved for basal cell carcinoma (BCC) treatment, can be enhanced by adjuvant ablative fractional laser (AFL) in syngeneic murine tumor models. In this explorative study, we aimed to assess locally applied AFL as an adjuvant to systemic aPD-1 treatment in a clinically relevant autochthonous BCC model. BCC tumors (n = 72) were induced in Ptch1+/−K14-CreER2p53fl/fl-mice (n = 34), and the mice subsequently received aPD-1 alone, AFL alone, aPD-1+AFL, or no treatment. The outcome measures included mouse survival time, tumor clearance, tumor growth rates, and tumor immune infiltration. Both aPD-1 and AFL alone significantly increased survival time relative to untreated controls (31 d and 34.5 d, respectively vs. 14 d, p = 0.0348–0.0392). Complementing aPD-1 with AFL further promoted survival (60 d, p = 0.0198 vs. aPD-1) and improved tumor clearance and growth rates. The BCCs were poorly immune infiltrated, but aPD-1 with adjuvant AFL and AFL alone induced substantial immune cell infiltration in the tumors. Similar to AFL alone, combined aPD-1 and AFL increased neutrophil counts (4-fold, p = 0.0242), the proportion of MHCII-positive neutrophils (p = 0.0121), and concordantly, CD4+ and CD8+ T-cell infiltration (p = 0.0061–0.0242). These descriptive results suggest that the anti-tumor response that is generated by aPD-1 with adjuvant AFL is potentially promoted by increased neutrophil and T-cell engraftment in tumors. In conclusion, local AFL shows substantial promise as an adjuvant to systemic aPD-1 therapy in a clinically relevant preclinical BCC model.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260095
Author(s):  
Joseph D. Sherrill ◽  
Deborah Finlay ◽  
Robert L. Binder ◽  
Michael K. Robinson ◽  
Xingtao Wei ◽  
...  

Ablative fractional laser treatment is considered the gold standard for skin rejuvenation. In order to understand how fractional laser works to rejuvenate skin, we performed microarray profiling on skin biopsies to identify temporal and dose-response changes in gene expression following fractional laser treatment. The backs of 14 women were treated with ablative fractional laser (Fraxel®) and 4 mm punch biopsies were collected from an untreated site and at the treated sites 1, 3, 7, 14, 21 and 28 days after the single treatment. In addition, in order to understand the effect that multiple fractional laser treatments have on skin rejuvenation, several sites were treated sequentially with either 1, 2, 3, or 4 treatments (with 28 days between treatments) followed by the collection of 4 mm punch biopsies. RNA was extracted from the biopsies, analyzed using Affymetrix U219 chips and gene expression was compared between untreated and treated sites. We observed dramatic changes in gene expression as early as 1 day after fractional laser treatment with changes remaining elevated even after 1 month. Analysis of individual genes demonstrated significant and time related changes in inflammatory, epidermal, and dermal genes, with dermal genes linked to extracellular matrix formation changing at later time points following fractional laser treatment. When comparing the age-related changes in skin gene expression to those induced by fractional laser, it was observed that fractional laser treatment reverses many of the changes in the aging gene expression. Finally, multiple fractional laser treatments, which cover different regions of a treatment area, resulted in a sustained or increased dermal remodeling response, with many genes either differentially regulated or continuously upregulated, supporting previous observations that maximal skin rejuvenation requires multiple fractional laser treatments. In conclusion, fractional laser treatment of human skin activates a number of biological processes involved in wound healing and tissue regeneration.


2021 ◽  
Author(s):  
Joseph D Sherrill ◽  
Deborah Finlay ◽  
Robert L Binder ◽  
Michael K Robinson ◽  
Xingtao Wei ◽  
...  

Ablative fractional laser treatment is considered the gold standard for skin rejuvenation. In order to understand how fractional laser works to rejuvenate skin, we performed microarray profiling on skin biopsies to identify temporal and dose-response changes in gene expression following fractional laser treatment. The backs of 14 women were treated with ablative fractional laser (Fraxel) and 4 mm punch biopsies were collected from an untreated site and at the treated sites 1, 3, 7, 14, 21 and 28 days after the single treatment. In addition, in order to understand the effect that multiple fractional laser treatments have on skin rejuvenation, several sites were treated sequentially with either 1, 2, 3, or 4 treatments (with 28 days between treatments) followed by the collection of 4 mm punch biopsies. RNA was extracted from the biopsies, analyzed using Affymetrix U219 chips and gene expression was compared between untreated and treated sites. We observed dramatic changes in gene expression as early as 1 day after fractional laser treatment with changes remaining elevated even after 1 month. Analysis of individual genes demonstrated significant and time related changes in inflammatory, epidermal, and dermal genes, with dermal genes linked to extracellular matrix formation changing at later time points following fractional laser treatment. When comparing the age-related changes in skin gene expression to those induced by fractional laser, it was observed that fractional laser treatment reverses many of the changes in the aging gene expression. Finally, multiple fractional laser treatments resulted in continued changes in gene expression, with many genes either differentially regulated or continuously upregulated with increasing number of treatments, indicating that maximal skin rejuvenation requires multiple fractional laser treatments. In conclusion, fractional laser treatment of skin activates several biological processes involved in wound healing and tissue regeneration, all of which significantly contribute to the rejuvenating effect of fractional laser treatment on aged skin.


2021 ◽  
Vol 8 ◽  
Author(s):  
Martin Bauer ◽  
Edith Lackner ◽  
Peter Matzneller ◽  
Valentin Al Jalali ◽  
Sahra Pajenda ◽  
...  

Ablative fractional laser treatment facilitates epidermal drug delivery, which might be an interesting option to increase the topical efficacy of biological drugs in a variety of dermatological diseases. This work aims at investigating safety and tolerability of this new treatment approach in patients with plaque-type psoriasis. Eight patients with plaque-type psoriasis were enrolled in this study. All patients received (i) ablative fractional laser microporation (AFL) of a psoriatic lesion with an Er:YAG laser + etanercept (ETA; Enbrel® solution for injection) (AFL-ETA), (ii) ETA alone on another lesion, and, if feasible, (iii) AFL alone on an additional lesion. Overall, all treatment arms showed a favorable safety profile. AFL-ETA improved the lesion-specific TPSS score by 1.75 vs. baseline, whereas ETA or AFL alone showed a TPSS score improvement of 0.75 points, a difference that was not statistically significant and might be attributable to differences in baseline scores. Topical administration of ETA to psoriatic plaques via AFL-generated micropores was generally well-tolerated. No special precautions seem necessary in future studies. Clinical benefit will need assessment in sufficiently powered follow-up studies.


Sign in / Sign up

Export Citation Format

Share Document