scholarly journals Invasion of fall armyworm Spodoptera frugiperda, a new invasive pest, alters native herbivore attack intensity and natural enemy diversity

2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Akhmad Rizali ◽  
Oktaviyani Oktaviyani ◽  
Sachristy Putri ◽  
Meygalintang Doananda ◽  
Asti Linggani

Abstract. Rizali A, Oktaviyani, Putri SDPS, Doananda M, Linggani A. 2021. Invasion of fall armyworm Spodoptera frugiperda, a new invasive pest, alters native herbivore attack intensity and natural enemy diversity. Biodiversitas 22: 3482-3488. A new invasive alien pest, fall armyworm Spodoptera frugiperda has been reported widely spread in Indonesia since 2019 and can cause a serious problem in maize cultivation. Its invasion of new habitat may severely impact not only maize production but also native biodiversity including other native pests. This research was aimed to investigate the effect of S. frugiperda invasion on the attack intensity of native herbivores as well as the diversity of natural enemies in maize fields. Field research was conducted in twelve maize fields spread across the district of Malang, Kediri, and Batu, East Java, Indonesia. In each maize field, sampling of S. frugiperda and other insects was conducted by the hand-picking method within four transects with each transect consisting of 100 plants. The results found five species of lepidopteran pests including S. frugiperda, Ostrinia furnacalis, Helicoverpa armigera, Mycalesis sp, and Chrysodeixes sp. S. frugiperda was found with higher attack intensity than other lepidopteran pests. Based on the analysis, the attack intensity of S. frugiperda had a positive relationship with pesticide application and was marginally correlated with plant age and elevation. The infestation of S. frugiperda significantly reduced the attack intensity of other lepidopteran pests as well as the diversity of natural enemies, especially predators. Two native species of parasitoid wasps, Telenomus sp and Mymaridae sp were recorded parasitizing the eggs of S. frugiperda. In conclusion, the infestation of S. frugiperda causes biotic homogenization in the maize field by directly compete with other lepidopteran pests and indirectly eliminate the natural enemy diversity.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1074
Author(s):  
Bonoukpoè Mawuko Sokame ◽  
Boaz Musyoka ◽  
Julius Obonyo ◽  
François Rebaudo ◽  
Elfatih M. Abdel-Rahman ◽  
...  

The interactions among insect communities influence the composition of pest complexes that attack crops and, in parallel, their natural enemies, which regulate their abundance. The lepidopteran stemborers have been the major maize pests in Kenya. Their population has been regulated by natural enemies, mostly parasitoids, some of which have been used for biological control. It is not known how a new exotic invasive species, such as the fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera, Noctuidae), may affect the abundance and parasitism of the resident stemborers. For this reason, pest and parasitism surveys have been conducted, before and after the FAW invaded Kenya, in maize fields in 40 localities across 6 agroecological zones (AEZs) during the maize-growing season, as well as at 3 different plant growth stages (pre-tasseling, reproductive, and senescence stages) in 2 elevations at mid-altitude, where all maize stemborer species used to occur together. Results indicated that the introduction of the FAW significantly correlated with the reduction of the abundance of the resident communities of maize stemborers and parasitoids in maize fields; moreover, the decrease of stemborer density after the arrival of FAW occurred mostly at both reproductive and senescent maize stages. It also suggests a possible displacement of stemborers by FAW elsewhere; for example, to other cereals. However, since this study was conducted only three years after the introduction of the FAW, further studies will need to be conducted to confirm such displacements.


2021 ◽  
Vol 18 (2) ◽  
pp. 153-158
Author(s):  
Yustina MSW Pu'u ◽  
◽  
Charly Mutiara ◽  

Corn is the main commodity in Ende Regency. One of the obstacles faced by farmers at the end of 2019 was the attack of the armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) which is an invasive pest. Information about its spread in Flores are lacking. Therefore the aim of this research is to conduct a survey on the geographic distribution of S. frugiperda during the growing season of June–July 2020 in Flores, its infestation, and the presence of natural enemies. Observations were made on 200 sample plants in each of the 5 location. Calculations were made on the population level and intensity of attack. The intensity of the attack was measured using the Davis scale. The results showed that the pest population and attack intensity of S. frugiperda in the Rewarangga village was 8.15 individuals/plant and 76%, Lokoboko was 1.32 individuals/plant and 34%, Nanganesa was 2.48 individuals/plant and 51%, Rewarangga amounted to 5.96 individuals/plant and 55%, and Borokanda 3.31 individuals/plant and 42%. The natural enemies of S. frugiperda have not been found in the field.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1063
Author(s):  
Ning Di ◽  
Kai Zhang ◽  
Qingxuan Xu ◽  
Fan Zhang ◽  
James D. Harwood ◽  
...  

The lepidopteran pest, Spodoptera frugiperda (JE Smith), spread rapidly after its first detection in China and has caused significant yield loss to maize production in the southwestern part of the country. Although natural enemies of S. frugiperda are present in the field, biological control using naturally distributed predators is ineffective because their underlying populations are too low. To enhance our understanding of the potential role of natural enemies in regulating this invasive pest, functional response experiments were conducted to quantify the response of two predators, Orius sauteri (Poppius) (Hemiptera: Anthocoridae) and Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), in terms of consumption of S. frugiperda. Experimental results revealed that the predatory effects of nymphs of O. sauteri and H. axyridis on the eggs and larvae of S. frugiperda fitted Holling’s Type II functional response model. Importantly, the theoretical maximum number of prey consumed per day (Na-max), the instantaneous attack rate (a′) and the handling time (Th) of O. sauteri nymphs on S. frugiperda eggs were 15.19, 0.7444 and 0.049 d, respectively; and the parameters on first instar larvae of S. frugiperda were 700.24, 0.5602 and 0.0008 d, respectively. These data contrast to those of H. axyridis, where the Na-max, a′ and Th of adults on eggs of S. frugiperda were 130.73, 1.1112 and 0.085 d, respectively, and on the first instar larvae of S. frugiperda were 1401.1, 0.8407 and 0.0006 d, respectively. These results revealed that H. axyridis is a highly voracious predator of the eggs and young larvae of S. frugiperda and O. sauteri could also be used as biocontrol agent of this pest. Our work provides a theoretical framework for the application of natural enemies to control S. frugiperda in the field. Further research is required to strategize conservation biological control approaches in the field to increase populations of these predators and enhance the suppression of S. frugiperda.


2020 ◽  
Vol 12 (2) ◽  
pp. 157-164
Author(s):  
S. Gahatraj ◽  
S. Tiwari ◽  
S. Sharma ◽  
L. Kafle

Abstract. Fall Armyworm (FAW), Spodoptera frugiperda, is an invasive pest of maize including other cultivated crops such as rice, wheat, and many other vegetables. This invasive species was initially noticed in North-America and later reported in many countries of Africa in early 2016. In South Asia, this has been reported for the first time in India followed by Srilanka in 2018 and Bangladesh, China, Taiwan and Nepal in 2019. It is polyphagous in nature and damage has been reported in more than 80 plant species. The loss has to lead up to 50-80% in maize in severe situation. FAW is a distant flyer and can fly more than 100 km in a night and spread well in crop fields. As this pest is already invasive in many states of India and the likelihood of entry and spreading in Nepal is higher because of the open border between the countries and flexible government quarantine policy. The great socio-economic loss has been forecasted once this pest has received invasive status in Nepal. Recently, this crop has been confirmed by Nepal Agricultural Research Council (NARC) in Gaidakot area of Nawalpur district, Nepal and has been noticed in almost all parts of Nepal such as Sidhuli, Chitwan, Nawalparasi, Tanahun and Rupendehi districts. However, this information has not been endorsed by Nepal Plant Protection Office (NPPO), an official invasive species endorsing organization in Nepal. This species is spreading rapidly in maize growing areas and significant losses have been reported in maize crop by the farmers. The regular scouting, surveillance, and monitoring can be suggested to evaluate the pest status in the crop field. Habitat manipulation with the deployment of deterring crops ‘push’ such as desmodium (Desmodium uncinatum) and pest-attracting crop ‘pull’ such as Napier (Pennisetum purpureum) and Sudan grass (Sorghum vulgare sudanense) is suggested in a ‘push-pull strategy’, the most popular and successful method of FAW management in the maize field. Field sanitation, and conserving pest’s natural enemies are other integrated approaches. However, in a commercial maize field, a group of ‘soft’ and selective chemicals have been suggested for immediate control of this pest. This review compiled the recent informations available on FAW and is useful for farmers, researchers and policy makers to draw a roadmap for the future FAW management in Nepal.


2021 ◽  
Author(s):  
Nan‐Ji Jiang ◽  
Bao‐Tong Mo ◽  
Hao Guo ◽  
Jun Yang ◽  
Rui Tang ◽  
...  

Author(s):  
Sumaira Yousaf ◽  
Abdul Rehman ◽  
Mariyam Masood ◽  
Kazam Ali ◽  
Nazia Suleman

AbstractThe fall armyworm (FAW), an invasive pest of maize, is an emerging threat in Southern Asia after America and Europe. Recently, this notorious pest has also been found in different areas of Pakistan. To assess its presence in Pakistan, a survey was carried out in the provinces of Punjab, Sindh, and Khyber Pakhtunkhwa during May–October 2019. We observed the highest incidence of FAW in Sindh with maximum impact in districts Tando-Allahyar and Hyderabad. These samples were identified as Spodoptera frugiperda on the morphological and taxonomical bases. However, morphological identification of this pest is very difficult at early larval instars. Here, we use the mitochondrial cytochrome c oxidase I (COI) gene region for the precise identification of larva of this invasive pest at species level. Two different regions of COI gene (COI-5′ and COI-3′) were used as molecular markers for the identification of this species. DNA sequence similarity searches of the obtained COI gene sequences (NCBI GenBank Accession Nos. MW241537, MW241538, MW349515, MW349516, MW349493 and MW349494) revealed that genetically it is more than 99% identical to S. frugiperda. The phylogenetic analysis indicated it as the rice-strain (R-strain). Both 3′- and 5′-fragment tree topologies showed that the collected samples of the FAW species belong to the R-strain. To the best of our knowledge, this is the first report providing molecular evidence for the existence of R-strain of S. frugiperda that was found feeding on maize crop in Sindh, Pakistan, using COI gene sequences as a marker.


2018 ◽  
Vol 122 ◽  
pp. 196-202 ◽  
Author(s):  
Hexon Angel Contreras-Cornejo ◽  
Ek del-Val ◽  
Lourdes Macías-Rodríguez ◽  
Alejandro Alarcón ◽  
Carlos E. González-Esquivel ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 112 ◽  
Author(s):  
Kelita Phambala ◽  
Yolice Tembo ◽  
Trust Kasambala ◽  
Vernon H. Kabambe ◽  
Philip C. Stevenson ◽  
...  

The fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae) is a recent invasive pest species that has successfully established across sub-Saharan Africa where it continues to disrupt agriculture, particularly smallholder cereal production. Management of FAW in its native range in the Americas has led to the development of resistance to many commercial pesticides before its arrival in Africa. Pesticide use may therefore be ineffective for FAW control in Africa, so new and more sustainable approaches to pest management are required that can help reduce the impact of this exotic pest. Pesticidal plants provide an effective and established approach to pest management in African smallholder farming and recent research has shown that their use can be cost-beneficial and sustainable. In order to optimize the use of botanical extracts for FAW control, we initially screened ten commonly used plant species. In laboratory trials, contact toxicity and feeding bioassays showed differential effects. Some plant species had little to no effect when compared to untreated controls; thus, only the five most promising plant species were selected for more detailed study. In contact toxicity tests, the highest larval mortality was obtained from Nicotiana tabacum (66%) and Lippia javanica (66%). Similarly, in a feeding bioassay L. javanica (62%) and N. tabacum (60%) exhibited high larval mortality at the highest concentration evaluated (10% w/v). Feeding deterrence was evaluated using glass-fibre discs treated with plant extracts, which showed that Cymbopogon citratus (36%) and Azadirachta indica (20%) were the most potent feeding deterrents among the pesticidal plants evaluated. In a screenhouse experiment where living maize plants infested with fall armyworm larvae were treated with plant extracts, N. tabacum and L. javanica were the most potent species at reducing foliar damage compared to the untreated control whilst the synthetic pesticide chlorpyrifos was the most effective in reducing fall armyworm foliar damage. Further field trial evaluation is recommended, particularly involving smallholder maize fields to assess effectiveness across a range of contexts.


Sign in / Sign up

Export Citation Format

Share Document