abcc6 gene
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 10)

H-INDEX

17
(FIVE YEARS 3)

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1895
Author(s):  
Max Jonathan Stumpf ◽  
Nadjib Schahab ◽  
Georg Nickenig ◽  
Dirk Skowasch ◽  
Christian Alexander Schaefer

Pseudoxanthoma elasticum (PXE) is a rare, genetic, metabolic disease with an estimated prevalence of between 1 per 25,000 and 56,000. Its main hallmarks are characteristic skin lesions, development of choroidal neovascularization, and early-onset arterial calcification accompanied by a severe reduction in quality-of-life. Underlying the pathology are recessively transmitted pathogenic variants of the ABCC6 gene, which results in a deficiency of ABCC6 protein. This results in reduced levels of peripheral pyrophosphate, a strong inhibitor of peripheral calcification, but also dysregulation of blood lipids. Although various treatment options have emerged during the last 20 years, many are either already outdated or not yet ready to be applied generally. Clinical physicians often are left stranded while patients suffer from the consequences of outdated therapies, or feel unrecognized by their attending doctors who may feel uncertain about using new therapeutic approaches or not even know about them. In this review, we summarize the broad spectrum of treatment options for PXE, focusing on currently available clinical options, the latest research and development, and future perspectives.


Circulation ◽  
2021 ◽  
Vol 144 (Suppl_2) ◽  
Author(s):  
Laura C. Pantoja ◽  
Maria del Mar Rodriguez Vazquez del Rey ◽  
Maria Teresa Medina Cano ◽  
Alejandro Carrero Castaño ◽  
Lorenzo Monserrat ◽  
...  

Case Presentation: A previously healthy 3-month-old infant presented with cardiorespiratory arrest, from which she was successfully resuscitated. A dilated cardiomyopathy with severely depressed systolic function was diagnosed. ECG showed high voltage QRS complexes and generalized alteration of repolarization. In the following 12 hours, she suffered 2 other cardiac arrests, recuperated with defibrillation. Hemodinamic stability was achieved but brain death was diagnosed 36 hours after the onset of symptoms. Autopsy showed striking calcification of the right and left coronary arteries, with narrowing of the arterial lumen, causing extensive subendocardial infarction. Calcification also affected the aorta, pulmonary arteries, thyroid, kidney and other splanchnic arteries. Generalized arterial calcification of infancy (GACI) was diagnosed and a genetic study found two biallelic variants in ABCC6 gene: p.Arg1114Cys and p.Trp38Ser, both previously described in elastic pseudoxanthoma (PXE), but not in GACI. Genotyping of the healthy parents confirmed genetic segregation with biallelic variants. Discussion: GACI is an extremely rare genetic disease characterized by widespread arterial calcification and narrowing of large and medium-sized vessels. The usual clinical presentation is heart failure in fetal life or in the first months of infancy. In most cases it is lethal, with death occurring within a few hours or days after the onset of symptoms, although clinical involvement is highly variable and cases with long survival have been described. GACI is an autosomal recessive disease secondary to biallelic variants in the ENPP1 gene (67% of cases) and in the ABCC6 gene (9%). The variants found in our patient had not been previously described in GACI, just in PXE, a much milder disease with usually normal lifespan. This case confirms that both entities reflect two extremes of a clinical spectrum of ectopic calcification instead of two different disorders. The aim of presenting this case is to remind clinicians of this rare etiology in neonates or infants with dilated cardiomyopathy. In case of death, autopsy should always be requested. When this condition is diagnosed, genetic study will be positive in 75% of cases, allowing prenatal counseling.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1034
Author(s):  
Gaetano Pietro Bulfamante ◽  
Laura Carpenito ◽  
Emma Bragantini ◽  
Silvia Graziani ◽  
Maria Bellizzi ◽  
...  

Generalized Arterial Calcification of Infancy (GACI) is a rare disease inherited in a recessive manner, with severe and diffuse early onset of calcifications along the internal elastic lamina in large and medium size arteries. The diagnosis results are from clinical manifestations, imaging, histopathologic exams, and genetic tests. GACI is predominantly caused by biallelic pathogenic variant in the ENPP1 gene (GACI1, OMIM#208000) and, to a lesser extent, by pathogenic variants in the ABCC6 gene (GACI2, OMIM#614473). We present a novel variation in the ENPP1 gene identified in a patient clinically diagnosed with GACI and confirmed by genetic investigation and autopsy as GACI type 1. The sequence analysis of the patient’s ENPP1 gene detected two heterozygous variants c.1412A>G (p.Tyr471Cys) and c.1715T>C (p.Leu572Ser). The variant c.1715T>C (p.Leu572Ser) has not been described yet in the literature and in mutation databases. A genetic analysis was also carried out for the parents of the newborn; the heterozygous pathogenic variant c.1412A>G (p.Tyr471Cys) was detected in the mother’s ENPP1 gene, and a sequence analysis of the father’s ENPP1 gene revealed the novel heterozygous variant c.1715T>C (p.Leu572Ser). Our results showed that the variant c.1715T>C (p.Leu572Ser) may have a pathogenic role in the development of GACI type1 (GACI1, OMIM#208000), at least when associated with the pathogenic c.1412A>G (p.Tyr471Cys) variant. The identification of novel mutations potentially enabled genotype/phenotype associations that will ultimately have an impact on clinical management and prognosis for the disease.


2021 ◽  
Vol 10 (3) ◽  
pp. 500
Author(s):  
Federica Boraldi ◽  
Francesco Demetrio Lofaro ◽  
Lorena Losi ◽  
Daniela Quaglino

Background: Pseudoxanthoma elasticum (PXE), due to rare sequence variants in the ABCC6 gene, is characterized by calcification of elastic fibers in several tissues/organs; however, the pathomechanisms have not been completely clarified. Although it is a systemic disorder on a genetic basis, it is not known why not all elastic fibers are calcified in the same patient and even in the same tissue. At present, data on soft connective tissue mineralization derive from studies performed on vascular tissues and/or on clinically affected skin, but there is no information on patients’ clinically unaffected skin. Methods: Skin biopsies from clinically unaffected and affected areas of the same PXE patient (n = 6) and from healthy subjects were investigated by electron microscopy. Immunohistochemistry was performed to evaluate p-SMAD 1/5/8 and p-SMAD 2/3 expression and localization. Results: In clinically unaffected skin, fragmented elastic fibers were prevalent, whereas calcified fibers were only rarely observed at the ultrastructural level. p-SMAD1/5/8 and p-SMAD2/3 were activated in both affected and unaffected skin. Conclusion: These findings further support the concept that fragmentation/degradation is necessary but not sufficient to cause calcification of elastic fibers and that additional local factors (e.g., matrix composition, mechanical forces and mesenchymal cells) contribute to create the pro-osteogenic environment.


2020 ◽  
Author(s):  
Keyword(s):  

2019 ◽  
Vol 20 (24) ◽  
pp. 6353 ◽  
Author(s):  
Emmanuel Letavernier ◽  
Elise Bouderlique ◽  
Jeremy Zaworski ◽  
Ludovic Martin ◽  
Michel Daudon

Pseudoxanthoma elasticum is a rare disease mainly due to ABCC6 gene mutations and characterized by ectopic biomineralization and fragmentation of elastic fibers resulting in skin, cardiovascular and retinal calcifications. It has been recently described that pyrophosphate (a calcification inhibitor) deficiency could be the main cause of ectopic calcifications in this disease and in other genetic disorders associated to mutations of ENPP1 or CD73. Patients affected by Pseudoxanthoma Elasticum seem also prone to develop kidney stones originating from papillary calcifications named Randall’s plaque, and to a lesser extent may be affected by nephrocalcinosis. In this narrative review, we summarize some recent discoveries relative to the pathophysiology of this mendelian disease responsible for both cardiovascular and renal papillary calcifications, and we discuss the potential implications of pyrophosphate deficiency as a promoter of vascular calcifications in kidney stone formers and in patients affected by chronic kidney disease.


2019 ◽  
Vol 24 (5) ◽  
pp. 461-464 ◽  
Author(s):  
Magali Devriese ◽  
Anne Legrand ◽  
Marie-Cécile Courtois ◽  
Xavier Jeunemaitre ◽  
Juliette Albuisson

Pseudoxanthoma elasticum (PXE) is a rare disorder characterized by skin, eye, and cardiovascular lesions due to ectopic mineralization and fragmentation of elastic fibers of connective tissues. We present an atypical case of PXE with diffuse vascular calcification and negligible skin and eye lesions. The patient was a 37-year-old man suffering from severe bilateral arterial calcifications in superficial femoral and posterior tibial arteries. Eye fundoscopy and skin examination were first considered normal. This phenotype suggested first the diagnosis of Arterial Calcification due to Deficiency of CD73 (ACDC) characterized by mutations in NT5E gene. However, we found two variants in ABCC6 gene, and no variant in NT5E. Skin reexamination revealed few lateral skin papules confined to the scalp. Phenotypic overlap was described in vascular calcification disorders, between GACI and PXE phenotypes, and we discuss here expansion of this overlap, including ACDC phenotype. Identification of these expanding and overlapping phenotypes was enabled by genetic screening of the corresponding genes, in a systematic approach. We propose to create a calcification next generation sequencing (NGS) panel with NT5E, GGCX, ENPP1, and ABCC6 genes to improve the molecular diagnosis of vascular calcification.


2019 ◽  
Vol 139 (6) ◽  
pp. 1254-1263 ◽  
Author(s):  
Jianhe Huang ◽  
Adam E. Snook ◽  
Jouni Uitto ◽  
Qiaoli Li

Sign in / Sign up

Export Citation Format

Share Document