fusion neutrons
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Long Chen ◽  
Sergey Smolentsev ◽  
Ming-Jiu Ni

Abstract On the pathway toward full simulations for a liquid metal blanket, this Part 2 extends a previous study of purely MHD flows in a DCLL blanket in Ref. 1 [Chen, L., Smolentsev, S., and Ni, M. J. (2020)] to more general conditions when the MHD flow is coupled with heat transfer. The simulated prototypic blanket module includes all components of a real liquid metal blanket system, such as supply ducts, inlet and outlet manifolds, multiple poloidal ducts and a U-turn zone. Volumetric heating generated by fusion neutrons is added to simulate thermal effects in the flowing PbLi breeder. The MHD flow equations and the energy equation are solved with a DNS-type finite-volume code “MHD-UCAS” on a very fine mesh of 470×10^6 cells. The applied magnetic field is 5 T (Hartmann number Ha~10^4), the PbLi velocity in the poloidal ducts is 10 cm/s (Reynolds number Re~10^5), whereas the maximum volumetric heating is 30 MW/m^3 (Grashof number Gr~10^12). Four cases have been simulated, including forced- and mixed-convection flows, and either an electrically conducting or insulating blanket structure. Various comparisons are made between the four computed cases and also against the purely MHD flows computed earlier in Ref. \cite{1} with regards to the (1) MHD pressure drop, (2) flow balancing, (3) temperature field, (4) flows in particular blanket components, and (5) 3D and turbulent flow effects. The strongest buoyancy effects were found in the poloidal ducts. In the electrically non- conducting blanket, the buoyancy forces lead to significant modifications of the flow structure, such as formation of reverse flows, whereas their effect on the MHD pressure drop is relatively small. In the electrically conducting blanket case, the buoyancy effects on the flow and MHD pressure drop are almost negligible.


2021 ◽  
Vol 47 (12) ◽  
pp. 1245-1260
Author(s):  
A. V. Vertkov ◽  
M. Yu. Zharkov ◽  
I. E. Lyublinskii ◽  
V. A. Safronov

Abstract When developing the stationary fusion reactor, an unresolved issue is the design of its intra-chamber plasma-facing elements. It has now become obvious that among the materials conventionally used for intra-chamber elements, there are no solid structural materials that would meet the requirements for the long-term operation under the effect of the flux of fusion neutrons (14 MeV) with a density of ~1014 cm–2 s–1 and the heat flux with a power density of 10–20 MW/m2. An alternative solution to this problem is the use of liquid metals as a plasma-facing materials, and, first of all, the use of lithium, which has a low atomic number (low charge number Z). Other easily-melting metals are also considered, which have higher Z number, but lower saturation vapor pressure than lithium. This will make it possible to create the long-lived, heavy-to-damage and self-renewing surface of the intra-chamber elements, which will not contaminate the plasma. The main ideas of the alternative concept of the intra-chamber elements can be formulated based on the comprehensive analysis of the problems and requirements arising during the development of intra-chamber elements of the stationary reactor, for example, the DEMO-type reactor. The article presents the analysis of the possible design of the lithium-coated intra-chamber elements and discusses the main ideas of the lithium first wall concept for the tokamak with reactor technologies.


2021 ◽  
Vol 173 ◽  
pp. 112913
Author(s):  
O. Putignano ◽  
E. Perelli Cippo ◽  
M. Rebai ◽  
G. Grosso ◽  
M. Nocente ◽  
...  
Keyword(s):  

2021 ◽  
Vol 136 (11) ◽  
Author(s):  
Antonino Pietropaolo ◽  
Gian Marco Contessa ◽  
Mirko Farini ◽  
Nicola Fonnesu ◽  
Ranieri Marinari ◽  
...  

2021 ◽  
Vol 136 (6) ◽  
Author(s):  
G. M. Contessa ◽  
M. D’Arienzo ◽  
M. Frisoni ◽  
P. Ferrari ◽  
R. Panichi ◽  
...  

AbstractENEA is developing an accelerator-driven 14 MeV neutron source exploiting the deuterium–tritium fusion reaction to produce 99Mo medical radioisotope as an alternative production route not based on fission reactors. It is expected that, during normal operation, a number of radionuclides, generated by means of neutron irradiation on the raw material (natural Molybdenum), will be produced and managed. The present manuscript, as foreseen by national law, discusses a hypothetical scenario to test the environmental screening models, in turn evaluating the mechanisms and parameters which affect and control the path of liquid effluents potentially released during normal operation of the facility. The aim is to estimate the amount of radioactivity to be operated and the fraction potentially discharged in this hypothetical scenario, so as to ensure that the radioactive material can be managed without any risk for the population and the environment, according to national regulations and thoroughly fulfilling the international guidelines.


2021 ◽  
Vol 253 ◽  
pp. 03005
Author(s):  
Andrej Žohar ◽  
Igor Lengar ◽  
Paola Batistoni ◽  
Sean Conroy ◽  
Aljaž Čufar ◽  
...  

In the 2019 C38 Deuterium-Deuterium campaign at JET several different ITER-relevant materials and dosimetry foils were irradiated in a specially designed long-term irradiation station located inside the vacuum vessel with the purpose of testing the activation of ITER materials by fusion neutrons. The samples were exposed to a neutron fluence of 1.9E14 n/cm2 during JET discharges performed in the experimental campaign over a period of 5 months. Gamma ray spectroscopy measurements were performed on irradiated samples to determine the activation of different long-lived isotopes in the samples. Monte Carlo computational analysis was performed to support the experiment by using the measured neutron yield and irradiation time. In this paper we focus on the computational analysis of the dosimetry foils that are used in order to measure the local neutron energy spectrum and flux. The foils were chosen to cover different neutron energies: thus Yttrium and some of the Nickel and Cobalt reactions were used to determine the Deuterium-Tritium fusion fraction, while Scandium and Iron and some of the Nickel and Cobalt reactions were used for comparison of the computed activity with the experimental measurements. The obtained C/E values show a reasonably good agreement between calculated and measured activity, thus validating the computational methodology and providing the basis for the analysis of the ITER-relevant materials and future experiments performed at JET in the Deuterium-Tritium campaign.


2021 ◽  
Vol 9 ◽  
Author(s):  
M. G. Capeluto ◽  
A. Curtis ◽  
C. Calvi ◽  
R. Hollinger ◽  
V. N. Shlyaptsev ◽  
...  

Abstract The interaction of intense, ultrashort laser pulses with ordered nanostructure arrays offers a path to the efficient creation of ultra-high-energy density (UHED) matter and the generation of high-energy particles with compact lasers. Irradiation of deuterated nanowires arrays results in a near-solid density environment with extremely high temperatures and large electromagnetic fields in which deuterons are accelerated to multi-megaelectronvolt energies, resulting in deuterium–deuterium (D–D) fusion. Here we focus on the method of fabrication and the characteristics of ordered arrays of deuterated polyethylene nanowires. The irradiation of these array targets with femtosecond pulses of relativistic intensity and joule-level energy creates a micro-scale fusion environment that produced $2\times {10}^6$  neutrons per joule, an increase of about 500 times with respect to flat solid CD2 targets irradiated with the same laser pulses. Irradiation with 8 J laser pulses was measured to generate up to 1.2 × 107 D–D fusion neutrons per shot.


2021 ◽  
Vol 16 (1) ◽  
pp. 21-43
Author(s):  
Igor V. Shamanin ◽  
Andrey V. Arzhannikov ◽  
Vadim V. Prikhodko ◽  
Vladimir M. Shmakov ◽  
Dmitry G. Modestov ◽  
...  

The results of full-scale numerical experiments of a hybrid thorium-containing fuel cell facility operating in a close-to-critical state due to a controlled source of fusion neutrons are discussed in this work. The facility under study was a complex consisting of two blocks. The first block was based on the concept of a high-temperature gas-cooled thorium reactor core. The second block was an axially symmetrical extended plasma generator of additional neutrons that was placed in the near-axial zone of the facility blanket. The calculated models of the blanket and the plasma generator of D-T neutrons created within the work allowed for research of the neutronic parameters of the facility in stationary and pulse-periodic operation modes. This research will make it possible to construct a safe facility and investigate the properties of thorium fuel, which can be continuously used in the epithermal spectrum of the considered hybrid fusion-fission reactor.


Sign in / Sign up

Export Citation Format

Share Document