calibration relation
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
pp. 1-9
Author(s):  
Lucia Spasevski ◽  
Ben Buse ◽  
Paul R. Edwards ◽  
Daniel A. Hunter ◽  
Johannes Enslin ◽  
...  

Abstract Wavelength-dispersive X-ray (WDX) spectroscopy was used to measure silicon atom concentrations in the range 35–100 ppm [corresponding to (3–9) × 1018 cm−3] in doped Al x Ga1–xN films using an electron probe microanalyser also equipped with a cathodoluminescence (CL) spectrometer. Doping with Si is the usual way to produce the n-type conducting layers that are critical in GaN- and Al x Ga1–xN-based devices such as LEDs and laser diodes. Previously, we have shown excellent agreement for Mg dopant concentrations in p-GaN measured by WDX with values from the more widely used technique of secondary ion mass spectrometry (SIMS). However, a discrepancy between these methods has been reported when quantifying the n-type dopant, silicon. We identify the cause of discrepancy as inherent sample contamination and propose a way to correct this using a calibration relation. This new approach, using a method combining data derived from SIMS measurements on both GaN and Al x Ga1–xN samples, provides the means to measure the Si content in these samples with account taken of variations in the ZAF corrections. This method presents a cost-effective and time-saving way to measure the Si doping and can also benefit from simultaneously measuring other signals, such as CL and electron channeling contrast imaging.


2020 ◽  
Author(s):  
Liz van Grinsven ◽  
Tristan van Leeuwen ◽  
Lennart de Groot

<p>Over the past years several groups have made efforts to calibrate the ‘pseudo-Thellier’ technique to obtain paleointensities from materials that acquired their natural remanent magnetizations thermally, while avoiding heating the samples during the experiments. These calibrations revolve around mapping laboratory induced Anhysteretic Remanent Magnetizations (ARMs) to thermally acquired Natural Remanent Magnetizations (NRMs).</p><p>One approach has been to plot pseudo-Thellier slopes against paleointensities that are either known (for very young lavas) or result from different paleointensity techniques. Although the obtained calibration relation is linear and closely follows the data, the relation worryingly misses the origin, i.e. a pseudo-Thellier slope of 0 leads to a paleointensity of up to 14.7 µT. Currently, there is no satisfying explanation for this non-zero axis intercept. Another approach has been to calibrate the mapping between the TRM and ARM by giving (thermally stable) samples a remanent magnetization and force the calibration through the origin. Although to the current state of our knowledge this is theoretically correct, the mismatch between the calibration relation and the data introduced by this approach is evident. So far, neither of these approaches yielded a generically applicable and theoretically acceptable mapping between ARMs and TRMs.</p><p>Naturally occurring basalts, however, are assemblages of magnetic minerals differing in grain size, shape, and chemistry. Here we take a new approach to the interpretation of pseudo-Thellier data by trying to find end-members for the ARMs, through nonnegative matrix factorization, that represent these different magnetic minerals in the samples. With the idea that the quantity of these end-members in the different ARMs are related to the original NRMs intensities. We use a set of 580 samples from different volcanic edifices (Hawaii, Mt. Etna, Tenerife, Gran Canaria, and Iceland) that recently cooled in the Earth’s magnetic field, so in known field strengths. The first results that we will present are encouraging and address the current challenges with obtaining absolute paleointensities from lavas with a pseudo-Thellier approach.</p>


2018 ◽  
Vol 613 ◽  
pp. A1 ◽  
Author(s):  
L. S. Pilyugin ◽  
E. K. Grebel ◽  
I. A. Zinchenko ◽  
Y. A. Nefedyev ◽  
V. M. Shulga ◽  
...  

We measured the emission lines in the spaxel spectra of Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) galaxies in order to determine the abundance distributions therein. It has been suggested that the strength of the low-ionization lines, R2, N2, and S2, may be increased (relative to Balmer lines) in (some) spaxel spectra of the MaNGA survey due to a contribution of the radiation of the diffuse ionized gas. Consequently, the abundances derived from the spaxel spectra through strong-line methods may suffer from large errors. We examined this expectation by comparing the behaviour of the line intensities and the abundances estimated through different calibrations for slit spectra of H II regions in nearby galaxies, for fibre spectra from the Sloan Digital Sky Survey, and for spaxel spectra of the MaNGA survey. We found that the S2 strength is increased significantly in the fibre and spaxel spectra. The mean enhancement changes with metallicity and can be as large as a factor of ~2. The mean distortion of R2 and N2 is less than a factor of ~1.3. This suggests that Kaufmann et al.’s (2003, MNRAS, 346, 1055) demarcation line between active galactic nuclei and H II regions in the Baldwin, Phillips, & Terlevich (BPT, 1981, PASP, 93, 5) diagram is a useful criterion to reject spectra with significantly distorted strengths of the N2 and R2 lines. We find that the three-dimensional R calibration, which uses the N2 and R2 lines, produces reliable abundances in the MaNGA galaxies. The one-dimensional N2 calibration produces either reliable or wrong abundances depending on whether excitation and N/O abundance ratio in the target region (spaxel) are close to or differ from those parameters in the calibrating points located close to the calibration relation. We then determined abundance distributions within the optical radii in the discs of 47 MaNGA galaxies. The optical radii of the galaxies were estimated from the surface brightness profiles constructed based on the MaNGA observations.


Author(s):  
Masoud Modaresifar ◽  
Gregory J. Kowalski

A numerical solution based on a varying node volume for the mass diffusion, thermal response during a dilution experiment of a reacting mixture was performed. The unique feature of the solution was its use of partial volumes and incorporating the changes in heat transfer area and internal node volume changes. The limiting behavior of these transient responses was in agreement with expected analytical results. The resulting temperature and concentration responses were used with a typical EOT calibration relation to estimate its response during an experiment. The calculated EOT and temperature time response exhibit the same trends as that observed experimentally.


2017 ◽  
Vol 5 (4) ◽  
pp. 669-687 ◽  
Author(s):  
Dieter Rickenmann ◽  
Bruno Fritschi

Abstract. The Swiss plate geophone system is a bedload surrogate measuring technique that has been installed in more than 20 streams, primarily in the European Alps. Here we report about calibration measurements performed in two mountain streams in Austria. The Fischbach and Ruetz gravel-bed streams are characterized by important runoff and bedload transport during the snowmelt season. A total of 31 (Fischbach) and 21 (Ruetz) direct bedload samples were obtained during a 6-year period. Using the number of geophone impulses and total transported bedload mass for each measurement to derive a calibration function results in a strong linear relation for the Fischbach, whereas there is only a poor linear calibration relation for the Ruetz measurements. Instead, using geophone impulse rates and bedload transport rates indicates that two power law relations best represent the Fischbach data, depending on transport intensity; for lower transport intensities, the same power law relation is also in reasonable agreement with the Ruetz data. These results are compared with data and findings from other field sites and flume studies. We further show that the observed coarsening of the grain size distribution with increasing bedload flux can be qualitatively reproduced from the geophone signal, when using the impulse counts along with amplitude information. Finally, we discuss implausible geophone impulse counts that were recorded during periods with smaller discharges without any bedload transport, and that are likely caused by vehicle movement very near to the measuring sites.


Author(s):  
Takuma Okahara ◽  
Shiro Biwa ◽  
Akira Kuraishi

The feasibility of utilizing focused ultrasonic waves for the nondestructive evaluation of porosity content in curved corner sections of carbon fiber reinforced plastic (CFRP) laminate structures is investigated numerically as well as experimentally. For this purpose, two-dimensional (2D) finite element simulations are carried out to clarify the wave propagation behavior and the reflection characteristics when the nonfocused or focused ultrasonic wave impinges on the corner section of unidirectional and quasi-isotropic CFRP laminates from the inner side via water. The corresponding reflection measurements are carried out for the CFRP corner specimens in the pulse-echo mode using nonfocusing, point-focusing, and line-focusing transducers. The numerical simulations and the experiments show that the use of focused ultrasonic waves is effective in obtaining clearly distinguishable surface and bottom echoes from the curved corner section of CFRP laminates. The influence of the porosity content on the reflection waveforms obtained with different types of transducers is demonstrated experimentally. The experimental results indicate that the porosity content of the CFRP corner section can be evaluated based on the amplitude ratio of the surface and bottom echoes obtained with focusing transducers, if the calibration relation is appropriately established for different ply stacking sequences.


2017 ◽  
Author(s):  
Dieter Rickenmann ◽  
Bruno Fritschi

Abstract. The Swiss plate geophone system is a bedload surrogate measuring technique that has been installed in more than 20 streams, primarily in the European Alps. Here we report about calibration measurements performed in two mountain streams in Austria. The Fischbach and Ruetz gravel–bed streams are characterized by important runoff and bedload transport during the snowmelt season. A total of 31 (Fischbach) and 21 (Ruetz) direct bedload samples were obtained during a six year period. Using the number of geophone impulses and total transported bedload mass for each measurement to derive a calibration function, results in a strong linear relation for the Fischbach, whereas there is only a poor linear calibration relation for the Ruetz measurements. Instead, using geophone impulse rates and bedload transport rates indicates that two power law relations best represent the Fischbach data, depending on transport intensity; for lower transport intensities, the same power law relation is also in reasonable agreement with the Ruetz data. These results are compared with data and findings from other field sites and flume studies. We further show that the observed coarsening of the grain size distribution with increasing bedload flux can be qualitatively reproduced from the geophone signal, when using the impulse counts along with amplitude information. Finally, we discuss implausible geophone impulse counts that were recorded during periods with smaller discharges without any bedload transport, and that are likely caused by vehicle movement very near to the measuring sites.


2011 ◽  
Vol 284 (18) ◽  
pp. 4161-4166 ◽  
Author(s):  
Yating Zhang ◽  
Li Xia ◽  
Chi Zhou ◽  
Xia Yu ◽  
Hairong Liu ◽  
...  

2008 ◽  
Vol 136 (9) ◽  
pp. 3374-3391 ◽  
Author(s):  
Giuseppe Mascaro ◽  
Roberto Deidda ◽  
Enrique R. Vivoni

Abstract A new verification method is proposed to test the consistency of ensemble high-resolution precipitation fields forecasted by calibrated downscaling models. The method is based on a generalization of the verification rank histogram and tests the exceedance probability of a fixed precipitation threshold calculated from the observed or ensemble fields. A graphical tool that accounts for random assignments of the rank is proposed to provide guidance in histogram interpretation and to avoid a possible misunderstanding of model deficiencies. The verification method is applied on three numerical experiments carried out in controlled conditions using the space–time rainfall (STRAIN) downscaling model with the aims of investigating (i) the effect of sampling variability on parameter estimation from the observed fields and (ii) model performance when calibration relations between the parameter and a coarse meteorological observable are used to interpret events arising from one or more physical conditions. Results show that (i) ensemble members generated using the parameters estimated on the observed event are overdispersed; (ii) the adoption of a single calibration relation can lead to the generation of consistent ensemble members; and (iii) when a single calibration relation is not able to explain observed event variability, storm-specific calibration relations should be adopted to return consistent forecasts.


Sign in / Sign up

Export Citation Format

Share Document