scholarly journals Heat transfer potentials of ZnO/water nanofluid in free impingement jet

Author(s):  
Hyder H. Balla ◽  
Alaa Liaq Hashem ◽  
Zaid S. Kareem ◽  
Ammar F. Abdulwahid
2019 ◽  
Vol 26 (1) ◽  
pp. 15-35 ◽  
Author(s):  
Phillip Ligrani ◽  
Patrick McInturff ◽  
Masaaki Suzuki ◽  
Chiyuki Nakamata

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 595
Author(s):  
Mahir Faris Abdullah ◽  
Rozli Zulkifli ◽  
Hazim Moria ◽  
Asmaa Soheil Najm ◽  
Zambri Harun ◽  
...  

Impinging jets are considered to be a well-known technique that offers high local heat transfer rates. No correlation could be established in the literature between the significant parameters and the Nusselt number, and investigation of the interactions between the correlated factors has not been conducted before. An experimental analysis based on the twin impingement jet mechanism was achieved to study the heat transfer rate pertaining to the surface plate. In the current paper, four influential parameters were studied: the spacing between nozzles, velocity, concentration of Nano solution coating and nozzle-plate distance, which are considered to be effective parameters for the thermal conductivity and the heat transfer coefficient of TiO2 nanoparticle, an X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis were done, which highlighted the structure and showed that the nanosolution coated the surface homogenously. Moreover, a comparison was done for the experimental results with that of the predicted responses generated by the Design Expert software, Version 7 User’s Guide, USA. A response surface methodology (RSM) was employed to improve a mathematical model by accounting for a D-optimal design. In addition, the analysis of variance (ANOVA) was employed for testing the significance of the models. The maximum Nu of 91.47, where H = S = 1 cm; Reynolds number of 17,000, and TiO2 nanoparticle concentration of 0.5% M. The highest improvement rate in Nusselt was about 26%, achieved with TiO2 Nanoparticle, when S = 3 cm, H = 6 cm and TiO2 nanoparticle = 0.5 M. Furthermore, based on the statistical analysis, the expected values were found to be in satisfactory agreement with that of the empirical data, which was conducted by accounting for the proposed models’ excellent predictability. Multivariate approaches are very useful for researchers, as well as for applications in industrial processes, as they lead to increased efficiency and reduced costs, so the presented results of this work could encourage the overall uses of multivariate methods in these fields. Hypotheses: A comparison was done for the predicted responses generated by the Design Expert software with the experimental results and then studied to verify the following hypotheses: ► Preparation of three concentrations of TiO2 nanosolution was done and studied. ► The heat transfer rate could be increased by surface coating with TiO2 nanoparticle. ► The heat transfer could be improved by the impingement jet technique with suitable adjustments.


2021 ◽  
pp. 1-17
Author(s):  
K. Xiao ◽  
J. He ◽  
Z. Feng

ABSTRACT This paper proposes an alternating elliptical impingement chamber in the leading edge of a gas turbine to restrain the cross flow and enhance the heat transfer, and investigates the detailed flow and heat transfer characteristics. The chamber consists of straight sections and transition sections. Numerical simulations are performed by solving the three-dimensional (3D) steady Reynolds-Averaged Navier–Stokes (RANS) equations with the Shear Stress Transport (SST) k– $\omega$ turbulence model. The influences of alternating the cross section on the impingement flow and heat transfer of the chamber are studied by comparison with a smooth semi-elliptical impingement chamber at a cross-flow Velocity Ratio (VR) of 0.2 and Temperature Ratio (TR) of 1.00 in the primary study. Then, the effects of the cross-flow VR and TR are further investigated. The results reveal that, in the semi-elliptical impingement chamber, the impingement jet is deflected by the cross flow and the heat transfer performance is degraded. However, in the alternating elliptical chamber, the cross flow is transformed to a pair of longitudinal vortices, and the flow direction at the centre of the cross section is parallel to the impingement jet, thus improving the jet penetration ability and enhancing the impingement heat transfer. In addition, the heat transfer in the semi-elliptical chamber degrades rapidly away from the stagnation region, while the longitudinal vortices enhance the heat transfer further, making the heat transfer coefficient distribution more uniform. The Nusselt number decreases with increase of VR and TR for both the semi-elliptical chamber and the alternating elliptical chamber. The alternating elliptical chamber enhances the heat transfer and moves the stagnation point up for all VR and TR, and the heat transfer enhancement is more obvious at high cross-flow velocity ratio.


Author(s):  
Abubakar M. El-Jummah ◽  
Ahmad Nazari ◽  
Gordon E. Andrews ◽  
John E. J. Staggs

Internal wall heat transfer for impingement/effusion cooling was measured and predicted using conjugate heat transfer (CHT) computational fluid dynamics (CFD). The work was only concerned with the internal wall heat transfer and not with the effusion film cooling and there was no hot gas crossflow. Previous work had predicted impingement/effusion internal wall cooling with equal number of holes. The present work investigated a small number of impingement holes and a larger number of effusion holes. The aim was to see if the effusion holes acted as a suction surface to the impingement surface flow and thus enhanced the wall heat transfer. Hole ratios of 1/4, 1/9 and 1/25 were studied by varying the number of effusion holes for a fixed array of impingement holes and a fixed impingement gap, Z, of 8 mm. The Z/D for the impingement holes was 2.7. The impingement hole pitch, X, to diameter, D ratio X/D was 10.6 at a constant effusion hole X/D of 4.7 for all the configurations. The impingement holes were aligned on the midpoint of four effusion holes. The results were computed for a mass flux G from 0.1–0.94 kg/sm2bar for all n. This gave 26 separate CFD/CHT computations. Locally surface, X2, average heat transfer coefficient (HTC), hx, values were determined using the lumped capacitance method. Nimonic 75 metal walls with imbedded thermocouples were used to determine hx from the time constant in a transient cooling experiment following electrical heating to about 80°C. The CHT/CFD predictions showed good agreement with measured data and the highest number of effusion holes for the 1/25 hole ratio gave the highest h. However, comparison with the predicted and experimental results for equal number of impingement and effusion holes for the same Z, showed that there was little advantage of decreasing the number of impingement holes, apart from that of decreasing the Z/D significantly for the 1/15 hole ratio, which increased the heat transfer. The largest number of effusion holes had the highest heat transfer due to the greater internal surface area of the holes and their closer spacing. This was present irrespective of the number of impingement holes and there was no evidence of any benefit of the 25 effusion holes enhancing the single impingement jet heat transfer. For the lowest number of effusion hole there was predicted to be a small disadvantage of reducing the number of impingement jets.


Author(s):  
Ken-Ichiro Takeishi ◽  
Robert Krewinkel ◽  
Yutaka Oda ◽  
Yuichi Ichikawa

In the near future, when designing and using Double Wall Airfoils, which will be manufactured by 3D printers, the positional relationship between the impingement cooling nozzle and the heat transfer enhancement ribs on the target plate naturally becomes more accurate. Taking these circumstances into account, an experimental study was conducted to enhance the heat transfer of the wall jet region of a round impingement jet cooling system. This was done by installing circular ribs or vortex generators (VGs) in the impingement cooling wall jet region. The local heat transfer coefficient was measured using the naphthalene sublimation method, which utilizes the analogy between heat and mass transfer. As a result, it was clarified that, within the ranges of geometries and Reynolds numbers at which the experiments were conducted, it is possible to improve the averaged Nusselt number Nu up to 21% for circular ribs and up to 51% for VGs.


Author(s):  
Eui Yeop Jung ◽  
Heeyoon Chung ◽  
Seok Min Choi ◽  
Ta-kwan Woo ◽  
Hyung Hee Cho

We report an investigation of the total cooling effectiveness of a film cooled surface with staggered array impingement jet cooling using infra-red thermography. Heat transfer experiments were carried out using three film cooled test plates of different thermal conductivities: stainless steel (with a thermal conductivity, k = 13.4 W/mK), Corian® (k = 1 W/mK), and polycarbonate (k = 0.2 W/mK). The effects of conduction through the test plates and convective heat transfer due to the arrayed impingement jets were analyzed. The inclination angle of the film cooling holes was 35° and that of the impingement jet holes was 90°. The film and impingement jet holes on each plate were arranged in a staggered pattern, and the film cooling holes and impingement jet holes were also positioned in a staggered pattern. The jet Reynolds number based on the hole diameter was Rejet = 3,000 and the equivalent blowing rate was M = 0.3. The ratio of the target surface height to the hole diameter was varied in the range 1 < H/d < 5. The diameter of both the film cooling holes and impingement jet holes was 5 mm. The total cooling effectiveness was investigated with and without the impingement jets. When the impingement jets were added to the internal cooling, the averaged total cooling effectiveness was enhanced about 8.4%. The stainless steel plate was found to exhibit better cooling performance with more uniform temperature distribution. The total cooling effectiveness was increased up to 0.87 in the stainless steel plate, and the maximum deviation of total cooling effectiveness in the stainless steel was reduced to 85% from that in polycarbonate plate along the lateral direction. The total cooling effectiveness was related to the Biot number of the film cooled plate, however, the effect of the H/d ratio was not significant.


Sign in / Sign up

Export Citation Format

Share Document