cobalamin biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 9)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Haijun Li ◽  
Shanming Wei ◽  
Na Liu ◽  
Yalu Du ◽  
Guantao Ding

Abstract Completely dechlorinating of trichloroethene (TCE) by Dehalococcoides mccartyi (D.mccartyi) is catalyzed by reductive dehalogenases (RDases) which possess cobalamin as the crucial cofactor, whereas virtually all pure D.mccartyi strains isolated thus far are corrinoid auxotrophs. Exogenous addition of commercially available cobalamin for real TCE-contaminated site decontamination is deemed to be unrealistic. In this study, TCE reduction by a D.mccartyi-containing microbial consortium utilizing biosynthetic cobalamin generated by interior corrinoid-producing organisms within this mixed consortia was studied. The results confirmed that subcultures with exogenous cobalamin omitting from the medium apparently were impervious and enabled to successively metabolize TCE to non-chlorinated ethene. The 2-bromoethanesulfonate and ampicillin resistance tests results suggested that bacteria (particularly certain ampicillin-sensitive ones) rather than methanogenic archaea within this microbial consortium were responsible for biosynthesizing cobalamin. Moreover, relative stable Ɛ-carbon values of TCE among treatments in disregard of whether exogenous cobalamin or selective inhibitors were existed in the medium also speculated that cobalamin biosynthesized by these organisms was enable to uptake and utilize by D.mccartyi for RDases synthesis and eventually participated in TCE reduction. Finally, the Illumina MiSeq sequencing analysis indicated that Desulfitobacterium and Acetobacterium in this microbial consortium probably both were in charge of de novo cobalamin biosynthesis to fulfillment the requirements of D.mccartyi for TCE metabolism.


2021 ◽  
Author(s):  
Chantal Bader ◽  
Fabian Panter ◽  
Ronald Garcia ◽  
Egor Tchesnokov ◽  
Sibylle Haid ◽  
...  

We report structure elucidation and total synthesis of five unprecedented terpenoid-alkaloids, the sandacrabins, alongside with the first description of their producing organism Sandaracinus defensii MSr10575, which expands the Sandaracineae family by only its second member. The genome sequence of S. defensii as presented in this study was utilized to identify enzymes responsible for sandacrabin formation, whereby dimethylbenzimidazol, deriving from cobalamin biosynthesis, was identified as key intermediate. Biological activity profiling revealed that all sandacrabins except congener A exhibit potent antiviral activity against the human pathogenic coronavirus HCoV229E in the three digit nanomolar range. Investigation of the underlying mode of action discloses that the sandacrabins inhibit the SARS-CoV-2 RNA-dependent RNA polymerase complex, highlighting them as structurally distinct non-nucleoside RNA synthesis inhibitors. The observed segregation between cell toxicity at higher concentrations and viral inhibition represents a good starting point for their medicinal chemistry optimization towards selective inhibitors.


2021 ◽  
Vol 22 (9) ◽  
pp. 4522
Author(s):  
Larissa Balabanova ◽  
Liudmila Averianova ◽  
Maksim Marchenok ◽  
Oksana Son ◽  
Liudmila Tekutyeva

Many microbial producers of coenzyme B12 family cofactors together with their metabolically interdependent pathways are comprehensively studied and successfully used both in natural ecosystems dominated by auxotrophs, including bacteria and mammals, and in the safe industrial production of vitamin B12. Metabolic reconstruction for genomic and metagenomic data and functional genomics continue to mine the microbial and genetic resources for biosynthesis of the vital vitamin B12. Availability of metabolic engineering techniques and usage of affordable and renewable sources allowed improving bioprocess of vitamins, providing a positive impact on both economics and environment. The commercial production of vitamin B12 is mainly achieved through the use of the two major industrial strains, Propionobacterium shermanii and Pseudomonas denitrificans, that involves about 30 enzymatic steps in the biosynthesis of cobalamin and completely replaces chemical synthesis. However, there are still unresolved issues in cobalamin biosynthesis that need to be elucidated for future bioprocess improvements. In the present work, we review the current state of development and challenges for cobalamin (vitamin B12) biosynthesis, describing the major and novel prospective strains, and the studies of environmental factors and genetic tools effecting on the fermentation process are reported.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ilhan Cem Duru ◽  
Florentina Ionela Bucur ◽  
Margarita Andreevskaya ◽  
Bahareh Nikparvar ◽  
Anne Ylinen ◽  
...  

Abstract Background High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). Results The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. Conclusions We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP.


2021 ◽  
Author(s):  
Terry Kipkorir ◽  
Gabriel T. Mashabela ◽  
Timothy J. de Wet ◽  
Anastasia Koch ◽  
Lubbe Wiesner ◽  
...  

Cobalamin is an essential co-factor in all domains of life, yet its biosynthesis is restricted to some bacteria and archaea. Mycobacterium smegmatis, an environmental saprophyte frequently used as surrogate for the obligate human pathogen, M. tuberculosis, carries approximately 30 genes predicted to be involved in de novo cobalamin biosynthesis. M. smegmatis also encodes multiple cobalamin-dependent enzymes, including MetH, a methionine synthase which catalyzes the final reaction in methionine biosynthesis. In addition to metH, M. smegmatis possesses a cobalamin-independent methionine synthase, metE, suggesting that enzyme use – MetH or MetE – is regulated by cobalamin availability. Consistent with this notion, we previously described a cobalamin-sensing riboswitch controlling metE expression in M. tuberculosis. Here, we apply a targeted mass spectrometry-based approach to confirm de novo cobalamin biosynthesis in M. smegmatis during aerobic growth in vitro. We also demonstrate that M. smegmatis can transport and assimilate exogenous cyanocobalamin (CNCbl; a.k.a. vitamin B12) and its precursor, dicyanocobinamide ((CN)2Cbi). However, the uptake of CNCbl and (CN)2Cbi in this organism is restricted and seems dependent on the conditional essentiality of the cobalamin-dependent methionine synthase. Using gene and protein expression analyses combined with single-cell growth kinetics and live-cell time-lapse microscopy, we show that transcription and translation of metE are strongly attenuated by endogenous cobalamin. These results support the inference that metH essentiality in M. smegmatis results from riboswitch-mediated repression of MetE expression. Moreover, differences observed in cobalamin-dependent metabolism between M. smegmatis and M. tuberculosis provide some insight into the selective pressures which might have shaped mycobacterial metabolism for pathogenicity. IMPORTANCE Alterations in cobalamin-dependent metabolism have marked the evolution of Mycobacterium tuberculosis as human pathogen. However, the role(s) of cobalamin in mycobacterial physiology remain poorly understood. Using the non-pathogenic saprophyte, M. smegmatis, we investigated the production of cobalamin, transport and assimilation of cobalamin precursors, and the role of cobalamin in regulating methionine biosynthesis. We confirm constitutive de novo cobalamin biosynthesis in M. smegmatis, in contrast with M. tuberculosis, which appears to lack de novo cobalamin biosynthetic capacity. We also show that uptake of cyanocobalamin (vitamin B12) and its precursors is restricted in M. smegmatis, apparently depending on the co-factor requirements of the cobalamin-dependent methionine synthase. These observations establish M. smegmatis as informative foil to elucidate key metabolic adaptations enabling mycobacterial pathogenicity.


2020 ◽  
Author(s):  
Ilhan Cem Duru ◽  
Florentina Ionela Bucur ◽  
Margarita Andreevskaya ◽  
Bahareh Nikparvar ◽  
Anne Ylinen ◽  
...  

Abstract Background High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). Results The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. Conclusions We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP.


2020 ◽  
Author(s):  
Terry Kipkorir ◽  
Gabriel T. Mashabela ◽  
Timothy J. De Wet ◽  
Anastasia Koch ◽  
Lubbe Wiesner ◽  
...  

ABSTRACTCobalamin is an essential co-factor in all domains of life, yet its biosynthesis is restricted to some bacteria and archaea. Mycobacterium smegmatis, an environmental saprophyte frequently used as surrogate for the obligate human pathogen, M. tuberculosis, carries approximately 30 genes predicted to be involved in de novo cobalamin biosynthesis. M. smegmatis also encodes multiple cobalamin-dependent enzymes, including MetH, a methionine synthase which catalyses the final reaction in methionine biosynthesis. In addition to metH, M. smegmatis possesses a cobalamin-independent methionine synthase, metE, suggesting that enzyme selection – MetH or MetE – is regulated by cobalamin availability. Consistent with this notion, we previously described a cobalamin-sensing riboswitch controlling metE expression in M. tuberculosis. Here, we apply a targeted mass spectrometry-based approach to confirm de novo cobalamin biosynthesis in M. smegmatis during aerobic growth in vitro. We also demonstrate that M. smegmatis transports and assimilates exogenous cyanocobalamin (CNCbl; a.k.a. vitamin B12) and its precursor, dicyanocobinamide ((CN)2Cbi). Interestingly, the uptake of CNCbl and (CN)2Cbi appears restricted in M. smegmatis and dependent on the conditional essentiality of the cobalamin-dependent methionine synthase. Using gene and protein expression analyses combined with single-cell growth kinetics and live-cell time-lapse microscopy, we show that transcription and translation of metE are strongly attenuated by endogenous cobalamin. These results support the inference that metH essentiality in M. smegmatis results from riboswitch-mediated repression of MetE expression. Moreover, differences observed in cobalamin-dependent metabolism between M. smegmatis and M. tuberculosis provide some insight into the selective pressures which might have shaped mycobacterial metabolism for pathogenicity.IMPORTANCEAccumulating evidence suggests that alterations in cobalamin-dependent metabolism marked the evolution of Mycobacterium tuberculosis from an environmental ancestor to an obligate human pathogen. However, the roles of cobalamin in mycobacterial physiology and pathogenicity remain poorly understood. We used the non-pathogenic saprophyte, M. smegmatis, to investigate the production of cobalamin, transport and assimilation of cobalamin precursors, and the potential role of cobalamin in regulating methionine biosynthesis. We provide biochemical and genetic evidence confirming constitutive de novo cobalamin biosynthesis in M. smegmatis under standard laboratory conditions, in contrast with M. tuberculosis, which appears to lack de novo cobalamin biosynthetic capacity. We also demonstrate that the uptake of cyanocobalamin (vitamin B12) and its precursors is restricted in M. smegmatis, apparently depending on the need to service the co-factor requirements of the cobalamin-dependent methionine synthase. These observations support the utility of M. smegmatis as a model to elucidate key metabolic adaptations enabling mycobacterial pathogenicity.


2020 ◽  
Vol 8 (5) ◽  
pp. 665
Author(s):  
Peng Peng ◽  
Yue Lu ◽  
Tom N.P. Bosma ◽  
Ivonne Nijenhuis ◽  
Bart Nijsse ◽  
...  

Chloroform (CF) is an environmental contaminant that can be naturally formed in various environments ranging from forest soils to salt lakes. Here we investigated CF removal potential in sediments obtained from hypersaline lakes in Western Australia. Reductive dechlorination of CF to dichloromethane (DCM) was observed in enrichment cultures derived from sediments of Lake Strawbridge, which has been reported as a natural source of CF. No CF removal was observed in abiotic control cultures without artificial electron donors, indicating biotic CF dechlorination in the enrichment cultures. Increasing vitamin B12 concentration from 0.04 to 4 µM in enrichment cultures enhanced CF removal and reduced DCM formation. In cultures amended with 4 µM vitamin B12 and 13C labelled CF, formation of 13CO2 was detected. Known organohalide-respiring bacteria and reductive dehalogenase genes were neither detected using quantitative PCR nor metagenomic analysis of the enrichment cultures. Rather, members of the order Clostridiales, known to co-metabolically transform CF to DCM and CO2, were detected. Accordingly, metagenome-assembled genomes of Clostridiales encoded enzymatic repertoires for the Wood-Ljungdahl pathway and cobalamin biosynthesis, which are known to be involved in fortuitous and nonspecific CF transformation. This study indicates that hypersaline lake microbiomes may act as a filter to reduce CF emission to the atmosphere.


Microbiology ◽  
2018 ◽  
Vol 164 (11) ◽  
pp. 1416-1431 ◽  
Author(s):  
Robin Ghosh ◽  
Erik Roth ◽  
Khaled Abou-Aisha ◽  
Rudolf Saegesser ◽  
Caroline Autenrieth

Sign in / Sign up

Export Citation Format

Share Document