scholarly journals Deficit Water Irrigation in an Almond Orchard Can Reduce Pest Damage

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2486
Author(s):  
José Enrique González-Zamora ◽  
Cristina Ruiz-Aranda ◽  
María Rebollo-Valera ◽  
Juan M. Rodríguez-Morales ◽  
Salvador Gutiérrez-Jiménez

Irrigated almond orchards in Spain are increasing in acreage, and it is pertinent to study the effect of deficit irrigation on the presence of pests, plant damage, and other arthropod communities. In an orchard examined from 2017 to 2020, arthropods and diseases were studied by visual sampling under two irrigation treatments (T1, control and T2, regulated deficit irrigation (RDI)). Univariate analysis showed no influence of irrigation on the aphid Hyalopterus amygdali (Blanchard) (Hemiptera: Aphididae) population and damage, but Tetranychus urticae Koch (Trombidiformes: Tetranychidae) damage on leaves was significantly less (50–60% reduction in damaged leaf area) in the T2 RDI treatment compared to the full irrigation T1 control in 2019 and 2020. Typhlocybinae (principal species Asymmetrasca decedens (Paoli) (Hemiptera: Cicadellidae)) population was also significantly lower under T2 RDI treatment. Chrysopidae and Phytoseiidae, important groups in the biological control of pests, were not affected by irrigation treatment. The most important diseases observed in the orchard were not, in general, affected by irrigation treatment. The multivariate principal response curves show significant differences between irrigation strategies in 2019 and 2020. In conclusion, irrigation schemes with restricted water use (such as T2 RDI) can help reduce the foliar damage of important pests and the abundance of other secondary pests in almond orchards.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1337
Author(s):  
José Enrique González-Zamora ◽  
Maria Teresa Alonso-López ◽  
Yolanda Gómez-Regife ◽  
Sara Ruiz-Muñoz

In Spain, water use in agriculture is expected to become limited by resources in the future. It is pertinent to study the effect of decreased irrigation on the presence of pests, plant damage, and arthropod communities in a super-intensive olive orchard examined from 2017 to 2019. Arthropods were studied with visual and vacuum sampling methods in two irrigation treatments (T1—control and T2—Regulated Deficit Irrigation (RDI)). Univariate analyses showed that the total arthropod abundance was significantly greater in T1 than in T2 in 2018 and 2019, mostly due to Diptera Nematocera. Visual sampling revealed that the feeding damage produced by Eriophyidae (Trombidiformes) was significantly lower in T2 in 2018 and 2019: 10–40% of shoots were affected in the late season compared with 50–60% affected for T1. The feeding symptoms caused by Palpita unionalis Hübner (Lepidoptera: Crambidae) and Zelleria oleastrella (Milliere) (Lepidoptera: Yponomeutidae) were significantly less for T2 than for T1. Multivariate principal response curves showed significant differences between irrigation strategies in the 2018 and 2019 data for both sampling methods. In conclusion, irrigation schemes with restricted water use (T2—RDI) help to reduce the abundance of several types of pests in olive crops, especially of those that feed on the plants’ new sprouts.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 94 ◽  
Author(s):  
Victor Blanco ◽  
Pedro José Blaya-Ros ◽  
Roque Torres-Sánchez ◽  
Rafael Domingo

The reproductive response of fifteen year old sweet cherry trees (Prunus avium L.) combination ‘Prime Giant’/SL64 under Mediterranean climate to deficit irrigation was studied in a commercial orchard in south-eastern Spain for four seasons. Three irrigation treatments were assayed: (i) control treatment, irrigated without restrictions at 110% of seasonal crop evapotranspiration; (ii) sustained deficit irrigation treatment, irrigated at 85% ETc during pre-harvest and post-harvest periods, and at 100% ETc during floral differentiation, and (iii) regulated deficit irrigation treatment, irrigated at 100% ETc during pre-harvest and floral differentiation and at 55% ETc during post-harvest. The duration and intensity of the phenological phases of sweet cherry trees, including cold accumulation, flowering, fruit set or fruit and vegetative growth, were assessed to ascertain whether the different irrigation strategies imposed affect the trees’ reproductive response (fruit yield, fruit size, leaf area, fruit physiological disturbances, and starch and soluble carbohydrates stock) in the same season or have a negative effect in the next season. Deficit irrigation did not advance, enhance or penalize flowering, fruit set or fruit growth. Neither did it diminish carbohydrate concentration in roots or cause an increase in the number of double fruits, which was more linked to high temperatures after harvest. However, deficit irrigation decreased vegetative growth and consequently the leaf area/fruit ratio, which, when it fell below 180 cm2 fruit−1, affected cherry size.


1993 ◽  
Vol 118 (5) ◽  
pp. 580-586 ◽  
Author(s):  
J. Girona ◽  
M. Mata ◽  
D.A. Goldhamer ◽  
R.S. Johnson ◽  
T.M. DeJong

Seasonal patterns of soil water content and diurnal leaf water potential (LWP), stomatal conductance(gs), and net CO2 assimilation (A) were determined in a high-density peach [Prunus persica(L) Batsch cv. Cal Red] subjected to regulated deficit irrigation scheduling. The regulated deficit irrigation treatment caused clear differences in soil water content and predawn LWP relative to control irrigation treatments. Treatment differences in midday LWP, gs, and A were also significant, but not as distinct as differences in predawn LWP. Leaves on trees subject of the deficit irrigation treatment were photosynthetically more water-use-efficient during the latter part of the stress period than were the nonstressed trees. Midday LWP and gs, on trees that received the regulated deficit irrigation treatment did not recover to control treatment values until more than 3 weeks after full irrigation was resumed at the beginning of state III of fruit growth, because of water infiltration problems in the dry soil caused by the deficit irrigation. The regulated deficit irrigation treatment caused only a 8% reduction in trunk growth relative to the control, but resulted in a 40% savings in irrigation requirements.


2000 ◽  
Vol 125 (1) ◽  
pp. 143-148 ◽  
Author(s):  
A.M. Boland ◽  
P.H. Jerie ◽  
P.D. Mitchell ◽  
I. Goodwin ◽  
D.J. Connor

Individual and interactive effects of restricted root volume (RRV) and regulated deficit irrigation (RDI) on productivity and water use of peach trees [Prunus persica (L.) Batsch `Golden Queen'] were studied over 3 years (1992-95). Trees were grown in lysimeters of five different soil volumes (0.025, 0.06, 0.15, 0.4, and 1.0 m3) with either full or deficit (RDI) irrigation. In Years 3 and 4, fruit size was reduced by up to 30% on trees in the two smallest volumes. Tree water use was positively related to increasing soil volume (linear, P < 0.001; quadratic, P < 0.011) in all years ranging from 1.8 to 4.4 L·mm-1 Epan in the post-RDI period of Year 2. Water use of deficit-irrigated trees was less than fully irrigated trees and there was an interaction between soil volume and irrigation treatment during RDI. Water relations did not limit growth or productivity. Tree water use was reduced under root restriction as a consequence of canopy demand rather than leaf function. Results suggest that a combination of restricted root volume and development of water stress achieve the RDI response in the Goulburn Valley, Australia.


2019 ◽  
Vol 19 (5) ◽  
pp. 1413-1421 ◽  
Author(s):  
Gaetano Alessandro Vivaldi ◽  
Salvatore Camposeo ◽  
Giuseppe Lopriore ◽  
Cristina Romero-Trigueros ◽  
Francisco Pedrero Salcedo

Abstract The main objective of this study was to acquire agronomic knowledge about the effects of irrigation with saline reclaimed (RW) and desalinated DESERT (DW) water and different irrigation strategies: control full irrigation (FI) and regulated deficit irrigation (RDI) on leaf nutrients, tree growth and fruit quality and yield of almond trees in pots. Our results showed that RW had the highest concentration of some valuable agronomic nutrients such as N, but also of phytotoxic elements (Na and Cl−). Na leaf concentration on RW treatments reached toxic levels, especially under RDI, and toxicity symptoms were shown. Regarding tree growth, cumulate trunk diameter on RW-RDI was significantly lower than on the control treatment and shoot growth was reduced from the beginning of the irrigation season in RW treatments. Maximum yield was reached on RW-FI, 18% higher than the control treatment. However, RDI strategies influenced negatively on yield, being 23% less in RW and 7% less in DW although water productivity was not significantly reduced by water stress. These findings manifest that the combination of RW and RDI can be a promising future practice for almond irrigation, but long-term studies to establish suitable management practices must be developed.


Sign in / Sign up

Export Citation Format

Share Document