scholarly journals Влияние углеродных нанотрубок на термоэлектрические свойства сплавов Гейслера p- и n-типа

Author(s):  
E.M. Elsehly ◽  
A. El-Khouly ◽  
Mohamed Asran Hassan ◽  
А.П. Новицкий ◽  
Д.Ю. Карпенков ◽  
...  

This paper presents the results of studying the effect of carbon nanotubes on thermoelectric properties of p-type (Nb0.6Ta0.4)0.8Ti0.2FeSb and n-type Ti0.5Zr0.25Hf0.25NiSn half Heusler alloys. The experimental data obtained indicate a strong effect of the carbon nanotubes on electrical conductivity and Seebeck coefficient of the n-type compound, while the changes in these properties in the p-type compound were significantly less. It is suggested that a possible reason for this difference is the formation of a conducting cluster of carbon nanotubes in the sample of the n-type Heusler alloy.

Author(s):  
А.И. Таранова ◽  
А.П. Новицкий ◽  
А.И. Воронин ◽  
С.В. Таскаев ◽  
В.В. Ховайло

In this work the results of an experimental study of Fe2Ti1-xVxSn alloys (x = 0; 0.06; 0.15; 0.2) are presented. According to the temperature dependencies of the electrical conductivity, Seebeck coefficient and thermal conductivity, it is established, that the studied compositions exhibit transport properties typical for semiconductors. The substitution of V at the Ti site leads to a change of the p-type electrical conductivity behavior to n-type; the pristine sample of Fe2TiSn has the best thermoelectric properties.


2003 ◽  
Vol 793 ◽  
Author(s):  
Masatoshi Takeda ◽  
Yosuke Kurita ◽  
Keisuke Yokoyama ◽  
Takahiro Miura ◽  
Tsuneo Suzuki ◽  
...  

ABSTRACTPolycrystalline alkaline-earth hexaborides (MB6: M =Ca, Sr, Ba) were synthesized and their thermoelectric and transport properties were examined to discuss their possibility as high temperature thermoelectric materials. Hall measurements showed that carrier concentration of the BaB6 was the highest among the three hexaborides and that of CaB6 was the lowest. Substitution of part of the alkaline earth metals with one of the others changed the carrier concentration of the hexaboride. As the carrier concentration increased, Seebeck coefficient increased and electrical conductivity decreased. These results suggest that the thermoelectric properties of the divalent hexaborides depend largely on the carrier concentration, and optimum carrier concentration which gives maximum power factor was estimated to be approximately 2x1026 m−3. Consequently, such a substitution enables us to control Seebeck coefficient and electrical conductivity of the hexaborides, and will also be effective to reduce the lattice heat conduction due to the alloying effect. A thermoelectric device was fabricated using SrB6 and boron carbide thin films as n-type and p-type elements, respectively. To the best of our knowledge, this is the first demonstration of a thermoelectric device composed of only boron-rich solids.


2013 ◽  
Vol 06 (05) ◽  
pp. 1340006 ◽  
Author(s):  
JINGSHU XU ◽  
CHENGUANG FU ◽  
JIAN XIE ◽  
XINBING ZHAO ◽  
TIEJUN ZHU

The p-type skutterudite compounds of ( Pr 0.25 Nd 0.75)x Fe 3 CoSb 12 (x = 0.67–0.78) have been successfully synthesized by levitation melting followed by annealing and spark plasma sintering. The thermoelectric properties have been characterized by the measurements of Seebeck coefficient, electrical conductivity and thermal conductivity in the temperature range from 300 K to 850 K. The improvement in the thermoelectric properties was realized due to the reduction in the lattice thermal conductivity when the voids were partially filled by Pr 0.25 Nd 0.75. The maximum ZT value of ~ 0.83 for ( Pr 0.25 Nd 0.75)0.76 Fe 3 CoSb 12 was obtained at 700 K.


2006 ◽  
Vol 510-511 ◽  
pp. 1086-1089 ◽  
Author(s):  
Wang Kee Min ◽  
Chang Ho Lee ◽  
Yong Ho Park ◽  
Ik Min Park

We investigated the effects of Fe3O4 (0~0.1 wt.%) on the thermoelectric properties of Bi1Sb4Te7.5 alloy prepared by mechanical alloying process. The Seebeck coefficient increased with Fe3O4 content, but the power factor decreased with Fe3O4 content because of the decreased electrical conductivity. The thermal conductivity decreased with Fe3O4. The carrier concentration measured by the Hall effect measurement decreased with Fe3O4. The thermal conductivity of 0.1 wt.% Fe3O4 alloy was 0.814 W/Km, 20%lower than that of Fe3O4 free alloy. As a result, the small addition of Fe3O4 improved the Z value owing to the decreased thermal conductivity by adding Fe3O4. The Z value of 0.01 wt.% Bi1Sb4Te7.5 alloy was 3.1×10-3 /K, the highest value among the prepared alloys.


2014 ◽  
Vol 602-603 ◽  
pp. 906-909 ◽  
Author(s):  
Yao Chun Liu ◽  
Jun Fu Liu ◽  
Bo Ping Zhang ◽  
Yuan Hua Lin

We report on the effect of Ni doping on the thermoelectric properties of p-type BiCuSeO oxyselenide, with layer structure composed of conductive (Cu2Se2)2-layers alternately stacked with insulating (Bi2O2)2+layers along c axis. After doping with Ni, enhanced electrical conductivity coupled with a moderate Seebeck coefficient leads to a power factor of ~231 μwm-1K-2at 873 K. Coupled to low thermal conductivity, ZT at 873 K is increased from 0.35 for pristine BiCuSeO to 0.39 for Bi0.95Ni0.05CuSeO. However, the efficiency of Ni doping in the insulating (Bi2O2)2+layer is low, and this doping only leads to a limited increase of the hole carriers concentration. Therefore Ni doped BiCuSeO has relatively low electrical conductivity which makes its thermoelectric figure of merit much lower than that of Ca, Sr, Ba and Pb doped BiCuSeO.


1998 ◽  
Vol 545 ◽  
Author(s):  
Ke-Feng Cai ◽  
Ce-Wen Nan ◽  
Xin-Min Min

AbstractB4C ceramics doped with various content of Si (0 to 2.03 at%) are prepared via hot pressing. The composition and microstructure of the ceramics are characterized by means of XRD and EPMA. Their electrical conductivity and Seebeck coefficient of the samples are measured from room temperature up to 1500K. The electrical conductivity increases with temperature, and more rapidly after 1300K; the Seebeck coefficient of the ceramics also increases with temperature and rises to a value of about 320μVK−1. The value of the figure of merit of Si-doped B4C rises to about 4 × 10−4K−1 at 1500K.


1987 ◽  
Vol 97 ◽  
Author(s):  
C. Wood ◽  
D. Emin ◽  
R. S. Feigelson ◽  
I. D. R. Mackinnon

ABSTRACTMeasurements of the electrical conductivity, Seebeck coefficient and Hall mobility from -300 K to -1300 K have been carried out on multiphase hotpressed samples of the nominal composition B6Si. In all samples the conductivity and the p-type Seebeck coefficient both increase smoothly with increasing temperature. By themselves, these facts suggest small-polaronic hopping between inequivalent sites. The measured Hall mobilities are always low, but vary in sign. A possible explanation is offered for this anomalous behavior.


2021 ◽  
Vol 317 ◽  
pp. 28-34
Author(s):  
Joon Hoong Lim

Thermoelectric materials has made a great potential in sustainable energy industries, which enable the energy conversion from heat to electricity. The band structure and thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 have been investigated. The bulk pellets were prepared from analytical grade ZnO, NiO and Fe2O3 powder using solid-state method. It was possible to obtain high thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 by controlling the ratios of dopants and the sintering temperature. XRD analysis showed that the fabricated samples have a single phase formation of cubic spinel structure. The thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 pellets improved with increasing Ni. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 (x = 0.0) is (0.515 x10-3 Scm-1). The band structure shows that ZnxCu1-xFe2O4 is an indirect band gap material with the valence band maximum (VBM) at M and conduction band minimum (CBM) at A. The band gap of Ni(x)Zn(1-x)Fe2O4 increased with increasing Ni content. The increasing band gap correlated with the lower electrical conductivity. The thermal conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The presence of Ni served to decrease thermal conductivity by 8 Wm-1K-1 over pure samples. The magnitude of the Seebeck coefficient for Ni(x)Zn(1-x)Fe2O4 pellets increased with increasing amounts of Ni. The figure of merit for Ni(x)Zn(1-x)Fe2O4 pellets and thin films was improved by increasing Ni due to its high Seebeck coefficient and low thermal conductivity.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2849 ◽  
Author(s):  
Yong Du ◽  
Haixia Li ◽  
Xuechen Jia ◽  
Yunchen Dou ◽  
Jiayue Xu ◽  
...  

Graphite/poly(3,4-ethyenedioxythiophene) (PEDOT) nanocomposites were prepared by an in-situ oxidative polymerization process. The electrical conductivity and Seebeck coefficient of the graphite/PEDOT nanocomposites with different content of graphite were measured in the temperature range from 300 K to 380 K. The results show that as the content of graphite increased from 0 to 37.2 wt %, the electrical conductivity of the nanocomposites increased sharply from 3.6 S/cm to 80.1 S/cm, while the Seebeck coefficient kept almost the same value (in the range between 12.0 μV/K to 15.1 μV/K) at 300 K, which lead to an increased power factor. The Seebeck coefficient of the nanocomposites increased from 300 K to 380 K, while the electrical conductivity did not substantially depend on the measurement temperature. As a result, a power factor of 3.2 μWm−1 K−2 at 380 K was obtained for the nanocomposites with 37.2 wt % graphite.


Sign in / Sign up

Export Citation Format

Share Document