Applications of ion level nanosensors for neuroscience research

Nanomedicine ◽  
2020 ◽  
Vol 15 (29) ◽  
pp. 2871-2881
Author(s):  
Min Wei ◽  
Peihua Lin ◽  
Ying Chen ◽  
Ji Young Lee ◽  
Lingxiao Zhang ◽  
...  

Ion activities are tightly associated with brain physiology, such as intracranial cell membrane potential, neural activity and neuropathology. Thus, monitoring the ion levels in the brain is of great significance in neuroscience research. Recently, nanosensors have emerged as powerful tools for monitoring brain ion levels and dynamics. With controllable structures and functions, nanosensors have been intensively used for monitoring neural activity and cell function and can be used in disease diagnosis. Here, we summarize the recent advances in the design and application of ion level nanosensors at different physiological levels, aiming to draw a connection of the interrelated intracranial ion activities. Furthermore, perspectives on the rationally designed ion level nanosensors in understanding the brain functions are highlighted.

2013 ◽  
Vol 2013 ◽  
pp. 1-23 ◽  
Author(s):  
Karim Alkadhi

Exposure to various forms of stress is a common daily occurrence in the lives of most individuals, with both positive and negative effects on brain function. The impact of stress is strongly influenced by the type and duration of the stressor. In its acute form, stress may be a necessary adaptive mechanism for survival and with only transient changes within the brain. However, severe and/or prolonged stress causes overactivation and dysregulation of the hypothalamic pituitary adrenal (HPA) axis thus inflicting detrimental changes in the brain structure and function. Therefore, chronic stress is often considered a negative modulator of the cognitive functions including the learning and memory processes. Exposure to long-lasting stress diminishes health and increases vulnerability to mental disorders. In addition, stress exacerbates functional changes associated with various brain disorders including Alzheimer’s disease and Parkinson’s disease. The primary purpose of this paper is to provide an overview for neuroscientists who are seeking a concise account of the effects of stress on learning and memory and associated signal transduction mechanisms. This review discusses chronic mental stress and its detrimental effects on various aspects of brain functions including learning and memory, synaptic plasticity, and cognition-related signaling enabled via key signal transduction molecules.


2022 ◽  
pp. 1-54
Author(s):  
Yohan J. John ◽  
Kayle S. Sawyer ◽  
Karthik Srinivasan ◽  
Eli J. Müller ◽  
Brandon R. Munn ◽  
...  

Abstract Most human neuroscience research to date has focused on statistical approaches that describe stationary patterns of localized neural activity or blood flow. While these patterns are often interpreted in light of dynamic, information-processing concepts, the static, local and inferential nature of the statistical approach makes it challenging to directly link neuroimaging results to plausible underlying neural mechanisms. Here, we argue that dynamical systems theory provides the crucial mechanistic framework for characterizing both the brain’s time-varying quality and its partial stability in the face of perturbations, and hence, that this perspective can have a profound impact on the interpretation of human neuroimaging results and their relationship with behavior. After briefly reviewing some key terminology, we identify three key ways in which neuroimaging analyses can embrace a dynamical systems perspective: by shifting from a local to a more global perspective; by focusing on dynamics instead of static snapshots of neural activity; and by embracing modeling approaches that map neural dynamics using “forward” models. Through this approach, we envisage ample opportunities for neuroimaging researchers to enrich their understanding of the dynamic neural mechanisms that support a wide array of brain functions, both in health and in the setting of psychopathology.


Author(s):  
Valerie Gray Hardcastle

The neuron doctrine refers to the idea that neurons are the fundamental units of the nervous system and that understanding the activity of these cells is all that is needed to understand the brain. Importantly, the doctrine holds that not only are neurons structurally and functionally discrete, but they also have very specific connectivity, which determines how they signal one another. This notion has supported much of neuroscience research throughout the twentieth century, with its focus on uncovering the anatomical, physiological, and chemical properties of neurons central to their function. It also underlies most current approaches to neural network research, which assumes that discrete units connected in highly specific ways give rise to complex behaviors in biological and artificial nervous systems. However, we now know that the brain also uses patterns of neural activity averaged across groups of neurons to process information. In addition, information from genes, glial cells, and cellular structure affects neuronal responses. Our view of what it means to be a cell and how cells interact with the world has gotten much more complicated since the 1800s. But an approximation of the neuron doctrine remains useful in guiding research today.


1983 ◽  
Vol 245 (1) ◽  
pp. E102-E105
Author(s):  
J. J. Morrissey ◽  
S. Klahr

An increase in the calcium ion concentration of the medium from 0.5 to 2.0 mM is associated with a 65% decrease in the secretion of parathyroid hormone from dispersed parathyroid cells. This maneuver also depolarized the cell membrane from -55 to -21 mV as measured by the distribution of [3H]tetraphenylphosphonium ion between cells and medium. An increase in the potassium ion concentration of the medium to 50 mM caused a 67% increase in hormone secretion at 0.5 mM calcium and depolarized the cell to -31 mV. The high potassium did not significantly change hormone secretion or the membrane potential at 2.0 mM calcium. Chlorpromazine inhibited hormone secretion by 40% and depolarized the cell to -30 mV at 0.5 mM calcium in the medium. Chlorpromazine did not change hormone secretion or membrane potential in cells incubated at 2.0 mM calcium. These results suggest that depolarization of the cell by calcium cannot account by itself for the inhibition of hormone secretion and chlorpromazine mimics the effect of an increase in calcium on parathyroid cell function.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7605
Author(s):  
Michał Lech ◽  
Andrzej Czyżewski ◽  
Michał T. Kucewicz

The emergence of innovative neurotechnologies in global brain projects has accelerated research and clinical applications of BCIs beyond sensory and motor functions. Both invasive and noninvasive sensors are developed to interface with cognitive functions engaged in thinking, communication, or remembering. The detection of eye movements by a camera offers a particularly attractive external sensor for computer interfaces to monitor, assess, and control these higher brain functions without acquiring signals from the brain. Features of gaze position and pupil dilation can be effectively used to track our attention in healthy mental processes, to enable interaction in disorders of consciousness, or to even predict memory performance in various brain diseases. In this perspective article, we propose the term ‘CyberEye’ to encompass emerging cognitive applications of eye-tracking interfaces for neuroscience research, clinical practice, and the biomedical industry. As CyberEye technologies continue to develop, we expect BCIs to become less dependent on brain activities, to be less invasive, and to thus be more applicable.


2021 ◽  
Author(s):  
Marie Karam ◽  
Guy Malkinson ◽  
Isabelle V BRUNET

Brain perivascular macrophages (PVMs) belong to border-associated macrophages. PVMs are situated along blood vessels in the Virchow-Robin space and are thus found at a unique anatomical position between the endothelium and the parenchyma. Owing to their location and phagocytic capabilities, PVMs are regarded as important components that regulate various aspects of brain physiology in health and pathophysiological states. Here, used LYVE-1 to identify PVMs in the mouse brain. We used brain-tissue sections and cleared whole-brain to learn how they are distributed within the brain and across different developmental postnatal stages. We find that LYVE-1+ PVMs associate with the vasculature in a brain-region-dependent manner, where the hippocampus shows the highest density of LYVE-1+ PVMs. We show that their postnatal distribution is developmentally dynamic and peaks at P10-P20 depending on the brain region. We further demonstrate that their density is reduced in the APP/PS1 mouse model of Alzheimers Disease. In conclusion, our results show an unexpected heterogeneity and dynamics of LYVE-1+ PVMs, and support an important role for this population of PVMs during development and in regulating brain functions in steady-state and disease conditions.


1970 ◽  
Vol 6 (1) ◽  
Author(s):  
Muskinul Fuad

The education system in Indonesia emphasize on academic intelligence, whichincludes only two or three aspects, more than on the other aspects of intelligence. For thatreason, many children who are not good at academic intelligence, but have good potentials inother aspects of intelligence, do not develop optimally. They are often considered and labeledas "stupid children" by the existing system. This phenomenon is on the contrary to the theoryof multiple intelligences proposed by Howard Gardner, who argues that intelligence is theability to solve various problems in life and produce products or services that are useful invarious aspects of life.Human intelligence is a combination of various general and specific abilities. Thistheory is different from the concept of IQ (intelligence quotient) that involves only languageskills, mathematical, and spatial logics. According to Gardner, there are nine aspects ofintelligence and its potential indicators to be developed by each child born without a braindefect. What Gardner suggested can be considered as a starting point to a perspective thatevery child has a unique individual intelligence. Parents have to treat and educate theirchildren proportionally and equitably. This treatment will lead to a pattern of education that isfriendly to the brain and to the plurality of children’s potential.More than the above points, the notion that multiple intelligences do not just comefrom the brain needs to be followed. Humans actually have different immaterial (spiritual)aspects that do not refer to brain functions. The belief in spiritual aspects and its potentialsmeans that human beings have various capacities and they differ from physical capacities.This is what needs to be addressed from the perspective of education today. The philosophyand perspective on education of the educators, education stakeholders, and especially parents,are the first major issue to be addressed. With this step, every educational activity andcommunication within the family is expected to develop every aspect of children'sintelligence, especially the spiritual intelligence.


Sign in / Sign up

Export Citation Format

Share Document