rhythmic discharge
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 1)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
HJ Moutlana

Respiration involves the inward and outward movement of air into the lungs. This process facilitates gaseous exchange. The rate of respiration therefore regulates the partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) in the blood. Spontaneous respiration occurs as a result of rhythmic discharge of motor neurons innervating respiratory muscles. Nerve impulses from the brain are responsible for this rhythmic discharge. The rhythmic contraction and relaxation of respiratory muscles alternatively fill the lungs during inspiration and empty them in expiration. This rhythmic discharges from the brain are regulated by changes in arterial PaO2, PaCO2 and hydrogen ion (H+) concentration, which is called the chemical control of respiration.


2013 ◽  
Vol 14 (S1) ◽  
Author(s):  
Nicolas Fourcaud-Trocmé ◽  
Virginie Briffaud ◽  
Corine Amat

Author(s):  
Alan Cowey

This article describes the ways in which transcranial magnetic stimulation (TMS) can be a means of studying consciousness by interfering with the physical occurrences of the brain. The focus of this article is aspects of consciousness, i.e. being aware or unaware, and their cerebral basis. TMS has been used to demonstrate regional cortical functional specialization. The reasons for the effects caused by TMS are still not fully known. Further work must be done in order to address this problem. TMS can briefly impose (or disrupt) rhythmic discharge in the underlying cortex and some of these rhythms are thought to be important for selective attention and awareness. TMS can disrupt activity in underlying brain tissue with millisecond precision but thus far it is usually used in isolation. When combined with event-related potentials and functional magnetic resonance imaging its usefulness will expand.


2011 ◽  
Vol 301 (4) ◽  
pp. R937-R946 ◽  
Author(s):  
Susan M. Barman ◽  
Yoichiro Sugiyama ◽  
Takeshi Suzuki ◽  
Lucy A. Cotter ◽  
Vincent J. DeStefino ◽  
...  

Although it is well established that bulbospinal neurons located in the rostral ventrolateral medulla (RVLM) play a pivotal role in regulating sympathetic nerve activity and blood pressure, virtually all neurophysiological studies of this region have been conducted in anesthetized or decerebrate animals. In the present study, we used time- and frequency-domain analyses to characterize the naturally occurring discharges of RVLM neurons in conscious cats. Specifically, we compared their activity to fluctuations in carotid artery blood flow to identify neurons with cardiac-related (CR) activity; we then considered whether neurons with CR activity also had a higher-frequency rhythmic firing pattern. In addition, we ascertained whether the surgical removal of vestibular inputs altered the rhythmic discharge properties of RVLM neurons. Less than 10% of RVLM neurons expressed CR activity, although the likelihood of observing a neuron with CR activity in the RVLM varied between recording sessions, even when tracking occurred in a very limited area and was higher after vestibular inputs were surgically removed. Either a 10-Hz or a 20- to 30-Hz rhythmic discharge pattern coexisted with the CR discharges in some of the RVLM neurons. Additionally, the firing rate of RVLM neurons, including those with CR activity, decreased after vestibular lesions. These findings raise the prospect that RVLM neurons may or may not express rhythmic firing patterns at a particular time due to a variety of influences, including descending projections from higher brain centers and sensory inputs, such as those from the vestibular system.


2008 ◽  
Vol 100 (1) ◽  
pp. 422-430 ◽  
Author(s):  
Romulo A. Fuentes ◽  
Marcelo I. Aguilar ◽  
María L. Aylwin ◽  
Pedro E. Maldonado

Odorants induce specific modulation of mitral/tufted (MT) cells' firing rate in the mammalian olfactory bulb (OB), inducing temporal patterns of neuronal discharge embedded in an oscillatory local field potential (LFP). While most studies have examined anesthetized animals, little is known about the firing rate and temporal patterns of OB single units and population activity in awake behaving mammals. We examined the firing rate and oscillatory activity of MT cells and LFP signals in behaving rats during two olfactory tasks: passive exposure (PE) and two-alternative (TA) choice discrimination. MT inhibitory responses are predominant in the TA task (76.5%), whereas MT excitatory responses predominate in the PE task (59.2%). Rhythmic discharge in the 12- to 100-Hz range was found in 79.0 and 68.9% of MT cells during PE and TA tasks, respectively. Most odorants presented in PE task increase rhythmic discharges at frequencies >50 Hz, whereas in TA, one of four odorants produced a modest increment <40 Hz. LFP oscillations were clearly modulated by odorants during the TA task, increasing their oscillatory power at frequencies centered at 20 Hz and decreasing power at frequencies >50 Hz. Our results indicate that firing rate responses of MT cells in awake animals are behaviorally modulated with inhibition being a prominent feature of this modulation. The occurrence of oscillatory patterns in single- and multiunitary discharge is also related to stimulation and behavioral context, while the oscillatory patterns of the neuronal population showed a strong dependence on odorant stimulation.


2008 ◽  
Vol 104 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Kun-Ze Lee ◽  
David D. Fuller ◽  
I-Jung Lu ◽  
Li-Chi Ku ◽  
Ji-Chuu Hwang

Phasic respiratory bursting in the facial nerve (FN) can be uncoupled from phrenic bursting by application of 9 cmH2O positive end-expired pressure (PEEP). This response reflects excitation of expiratory-inspiratory (EI) and preinspiratory (Pre-I) facial neurons during the Pre-I period and inhibition of EI neurons during inspiration (I). Because activation of pulmonary C-fiber (PCF) receptors can inhibit the discharge of EI and Pre-I neurons, we hypothesized that PCF receptor activation via capsaicin would attenuate or abolish uncoupled FN bursting with an increase from 3 cmH2O (baseline) to 9 cmH2O PEEP. Neurograms were recorded in the FN and phrenic nerve in anesthetized, ventilated, vagally intact adult Wistar rats. Increasing PEEP to 9 cmH2O resulted in a persistent rhythmic discharge in the FN during phrenic quiescence (i.e., uncoupled bursting). Combination of PEEP with intrajugular capsaicin injection severely attenuated or eliminated uncoupled bursting in the FN ( P < 0.05). Additional experiments examined the pattern of facial motoneuron (vs. neurogram) bursting during PEEP application and capsaicin treatment. These single-fiber recordings confirmed that Pre-I and EI (but not I) neurons continued to burst during PEEP-induced phrenic apnea. Capsaicin treatment during PEEP substantially inhibited Pre-I and EI neuron discharge. Finally, analyses of FN and motoneuron bursting across the respiratory cycle indicated that the inhibitory effects of capsaicin were more pronounced during the Pre-I period. We conclude that activation of PCF receptors can inhibit FN bursting during PEEP-induced phrenic apnea by inhibiting EI and I facial motoneuron discharge.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 120-127 ◽  
Author(s):  
Chihiro Ohye ◽  
Tohru Shibazaki ◽  
Junji Ishihara ◽  
Jie Zhang

Object. The effects of gamma thalamotomy for parkinsonian and other kinds of tremor were evaluated. Methods. Thirty-six thalamotomies were performed in 31 patients by using a 4-mm collimator. The maximum dose was 150 Gy in the initial six cases, which was reduced to 130 Gy thereafter. The longest follow-up period was 6 years. The target was determined on T2-weighted and proton magnetic resonance (MR) images. The point chosen was in the lateral-most part of the thalamic ventralis intermedius nucleus. This is in keeping with open thalamotomy as practiced at the authors' institution. In 15 cases, gamma thalamotomy was the first surgical procedure. In other cases, previous therapeutic or vascular lesions were visible to facilitate targeting. Two types of tissue reaction were onserved on MR imaging: a simple oval shape and a complex irregular shape. Neither of these changes affected the clinical course. In the majority of cases, the tremor subsided after a latent interval of approximately 1 year after irradiation. The earliest response was demonstrated at 3 months. In five cases the tremor remained. In four of these cases, a second radiation session was administered. One of these four patients as well as another patient with an unsatisfactory result underwent open thalamotomy with microrecording. In both cases, depth recording adjacent to the necrotic area revealed normal neuronal activity, including the rhythmic discharge of tremor. Minor coagulation was performed and resulted in immediate and complete arrest of the remaining tremor. Conclusions. Gamma thalamotomy for Parkinson's disease seems to be an alternative useful method in selected cases.


Sign in / Sign up

Export Citation Format

Share Document