mesoscale ocean eddies
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Pierre-Vincent Huot ◽  
Christoph Kittel ◽  
Thierry Fichefet ◽  
Nicolas Jourdain ◽  
Xavier Fettweis

<p>The mesoscale activity of the ocean – eddies and fronts with dimensions ranging from 1 to 100 km which populate the Southern Ocean – is thought to modulate air-sea interactions due to its imprint on the sea surface conditions. However, very little is known about the effects of the mesoscale activity on the exchanges between the ocean and the atmosphere of polar regions. The smaller deformation radius and the seasonal sea ice coverage suggest that air-sea interactions at the mesoscale could be very different at high latitude. In this study, we examine how mesoscale ocean eddies affect the state of the atmosphere and the air-sea interactions in polar regions. We use a regional, eddy resolving ocean-sea ice-atmosphere coupled model (NEMO-LIM 1/24° and MAR at 10 km) of the Southern Ocean off the Adélie Land sector, in East Antarctica. We describe the imprint of the eddies on the near surface atmosphere with specific attention to the effect of the sea ice. The role of feedbacks between the air, sea and ice is further investigated. A series of experiments is carried out where the signature of the mesoscale variability on the sea surface is filtered out before the exchange with the atmosphere model. We use these experiments to explore the role of the modulation of air-sea-ice interactions by the ocean mesoscale activity in the evolution of the ocean, sea ice and atmosphere near the Marginal Ice Zone on daily to seasonal time scales. This study advances our understanding of the poorly explored role of the eddies on air-sea interactions in the polar regions.</p>


2020 ◽  
Vol 12 (3) ◽  
pp. 542 ◽  
Author(s):  
Mostafa Hoseini ◽  
Milad Asgarimehr ◽  
Valery Zavorotny ◽  
Hossein Nahavandchi ◽  
Chris Ruf ◽  
...  

Feasibility of sensing mesoscale ocean eddies using spaceborne Global Navigation Satellite Systems-Reflectometry (GNSS-R) measurements is demonstrated for the first time. Measurements of Cyclone GNSS (CYGNSS) satellite missions over the eddies, documented in the Aviso eddy trajectory atlas, are studied. The investigation reports on the evidence of normalized bistatic radar cross section ( σ 0 ) responses over the center or the edges of the eddies. A statistical analysis using profiles over eddies in 2017 is carried out. The potential contributing factors leaving the signature in the measurements are discussed. The analysis of GNSS-R observations collocated with ancillary data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis-5 (ERA-5) shows strong inverse correlations of σ 0 with the sensible heat flux and surface stress in certain conditions.


2019 ◽  
Vol 8 (12) ◽  
pp. 574 ◽  
Author(s):  
Huimeng Wang ◽  
Yunyan Du ◽  
Yong Sun ◽  
Fuyuan Liang ◽  
Jiawei Yi ◽  
...  

Many real-world dynamic features such as ocean eddies, rain clouds, and air masses may split or merge while they are migrating within a space. Topologically, the migration trajectories of such features are structurally more complex as they may have multiple branches due to the splitting and merging processes. Identifying the spatial aggregation patterns of the trajectories could help us better understand how such features evolve. We propose a method, a Global Similarity Measuring Algorithm for the Complex Trajectories (GSMCT), to examine the spatial proximity and topologic similarity among complex trajectories. The method first transforms the complex trajectories into graph structures with nodes and edges. The global similarity between two graph structures (i.e., two complex trajectories) is calculated by averaging their topologic similarity and the spatial proximity, which are calculated using the Comprehensive Structure Matching (CSM) and the Hausdorff distance (HD) methods, respectively. We applied the GSMCT, the HD, and the Dynamic Time Warping (DTW) methods to examine the complex trajectories of the 1993–2016 mesoscale eddies in the South China Sea (SCS). Based on the similarity evaluation results, we categorized the complex trajectories across the SCS into four groups, which are similar to the zoning results reported in previous studies, though difference exists. Moreover, the yearly numbers of complex trajectories in the clusters in the northernmost (Cluster 1) and the southernmost SCS (Cluster 4) are almost the same. However, their seasonal variation and migration characteristics are totally opposite. Such new knowledge is very useful for oceanographers of interest to study and numerically simulate the mesoscale ocean eddies in the SCS.


2019 ◽  
Vol 11 (24) ◽  
pp. 6979
Author(s):  
Hsiao-Wei Chung ◽  
Cheng-Chien Liu

The upwelling zone off northeastern Taiwan (UZONT) is one of the hot spots with mesoscale ocean eddies (MOEs) and eddy-induced transports in the north Pacific Ocean. We start from the temporal and spatial variations in MOEs in the UZONT, based on the Himawari-8 SST product and the GOCI chlorophyll-a product time series, respectively. Their relationship with three major factors, including the Kuroshio, typhoon, and El Niño/La Niña events, are then investigated. The spatiotemporal variations in MOEs serve as ideal indicators by which to understand the influences on the UZONT due to interannual environmental factors and climate change.


2018 ◽  
Vol 15 (15) ◽  
pp. 4781-4798 ◽  
Author(s):  
Ivy Frenger ◽  
Matthias Münnich ◽  
Nicolas Gruber

Abstract. Although mesoscale ocean eddies are ubiquitous in the Southern Ocean, their average regional and seasonal association with phytoplankton has not been quantified systematically yet. To this end, we identify over 100 000 mesoscale eddies with diameters of 50 km and more in the Southern Ocean and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll-a (Chl) as a proxy. The mean Chl anomalies, δChl, associated with these eddies, comprising the upper echelon of the oceanic mesoscale, exceed ±10 % over wide regions. The structure of these anomalies is largely zonal, with cyclonic, thermocline lifted, eddies having positive anomalies in the subtropical waters north of the Antarctic Circumpolar Current (ACC) and negative anomalies along its main flow path. The pattern is similar, but reversed for anticyclonic, thermocline deepened eddies. The seasonality of δChl is weak in subtropical waters, but pronounced along the ACC, featuring a seasonal sign switch. The spatial structure and seasonality of the mesoscale δChl can be explained largely by lateral advection, especially local eddy-stirring. A prominent exception is the ACC region in winter, where δChl is consistent with a modulation of phytoplankton light exposure caused by an eddy-induced modification of the mixed layer depth. The clear impact of mesoscale eddies on phytoplankton may implicate a downstream effect on Southern Ocean biogeochemical properties, such as mode water nutrient contents.


2018 ◽  
Vol 35 (9) ◽  
pp. 1189-1204 ◽  
Author(s):  
Haoya Liu ◽  
Weibiao Li ◽  
Shumin Chen ◽  
Rong Fang ◽  
Zhuo Li

2018 ◽  
Author(s):  
Ivy Frenger ◽  
Matthias Münnich ◽  
Nicolas Gruber

Abstract. Although mesoscale ocean eddies are ubiquitous in the Southern Ocean, their spatial and seasonal association with phytoplankton has to date not been quantified in detail. To this end, we identify over 100,000 eddies in the Southern Ocean and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll-a (Chl) as a proxy. The mean eddy associated Chl anomalies (𝛿Chl) exceed ±10 % over wide regions. The structure of these anomalies is largely zonal, with cyclonic, thermocline lifting, eddies having positive anomalies in the subtropical waters north of the Antarctic Circumpolar Current (ACC) and negative anomalies along the ACC. The pattern is similar, but reversed for anticyclonic, thermocline deepening eddies. The seasonality of 𝛿Chl is weak in subtropical waters, but pronounced along the ACC, featuring a seasonal sign switch. The spatial structure and seasonality of 𝛿Chl can be explained largely by lateral advection, especially eddy-stirring. A prominent exception is the ACC region in winter, where 𝛿Chl is consistent with a modulation of phytoplankton light exposure caused by an eddy-induced modification of the mixed layer depth. The clear impact of eddies on phytoplankton may implicate a downstream effect on Southern Ocean biogeochemical properties, such as mode water nutrient contents.


2017 ◽  
Vol 44 (13) ◽  
pp. 6926-6932 ◽  
Author(s):  
A. Amores ◽  
S. Monserrat ◽  
O. Melnichenko ◽  
N. Maximenko

Sign in / Sign up

Export Citation Format

Share Document