high osmolarity glycerol pathway
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Xinyu Liu ◽  
Qikun Zhou ◽  
Ziqian Guo ◽  
Peng Liu ◽  
Lingbo Shen ◽  
...  

The production of reactive oxygen species (ROS) is a ubiquitous defense response in plants. Adapted pathogens evolved mechanisms to counteract the deleterious effects of host-derived ROS and promote infection. How plant pathogens regulate this elaborate response against ROS burst remains unclear. Using the rice blast fungus Magnaporthe oryzae, we uncovered a self-balancing circuit controlling response to ROS in planta and virulence. During infection, ROS induces phosphorylation of the high osmolarity glycerol pathway kinase MoOsm1 and its nuclear translocation. There, MoOsm1 phosphorylates transcription factor MoAtf1 and dissociates MoAtf1-MoTup1 complex. This releases MoTup1-mediated transcriptional repression on oxidoreduction-pathway genes and activates the transcription of MoPtp1/2 protein phosphatases. In turn, MoPtp1/2 dephosphorylate MoOsm1, restoring the circuit to its initial state. Balanced interactions among proteins centered on MoOsm1 provide a means to counter host-derived ROS. Our findings thereby reveal new insights into how M. oryzae utilizes a phosphor-regulatory circuitry to face plant immunity during infection.


2019 ◽  
Vol 58 (3) ◽  
pp. 362-371
Author(s):  
Isabella Böhmer ◽  
Anja Spadinger ◽  
Frank Ebel

Abstract In filamentous fungi, group III hybrid histidine kinases (HHKs) are major and nonredundant sensing proteins of the high osmolarity glycerol pathway. In this study, we have compared the biological functions of the two homologous group III HHKs TcsC of Aspergillus fumigatus and NikA of A. nidulans. As expected from previous studies, the corresponding mutants are severely impaired in their ability to adapt to hyperosmotic stress and are both resistant to the antifungal agent fludioxonil. However, our data also reveal novel phenotypes and differences between these mutants. Both TcsC and NikA are required for wild-type-like growth on Czapek-Dox medium and a normal resistance to certain oxidative stressors, whereas an increased resistance to the cell wall disturbing agents Congo red and Calcofluor white was found for the ΔtcsC but not for the ΔnikA mutant. With respect to the cell wall reorganizations that are triggered by fludioxonil in a TcsC/NikA-dependent manner, we observed similarities but also striking differences. Strains from seven Aspergillus species, including A. fumigatus and A. nidulans incorporated more chitin into their cell walls in response to fludioxonil. In contrast, fludioxonil treatment resulted in a shedding of surface accessible galactomannan and β-1,3-glucan in all Aspergillus strains tested except A. nidulans. Hence, the fludioxonil-induced activation of NikA results in a distinct and apparently A. nidulans-specific pattern of cell wall reorganizations that is not due to NikA itself, but its integration into the A. nidulans signaling network.


2018 ◽  
Vol 31 (11) ◽  
pp. 1121-1133 ◽  
Author(s):  
Zunyong Liu ◽  
Na Liu ◽  
Huixian Jiang ◽  
Leiyan Yan ◽  
Zhonghua Ma ◽  
...  

The type 2A protein phosphatases (PP2As) are holoenzymes in all eukaryotes but their activators remain unknown in filamentous fungi. Fusarium graminearum contains three PP2As (FgPp2A, FgSit4, and FgPpg1), which play critical roles in fungal growth, development, and virulence. Here, we identified two PP2A activators (PTPAs), FgRrd1 and FgRrd2, and found that they control PP2A activity in a PP2A-specific manner. FgRrd1 interacts with FgPpg1, but FgRrd2 interacts with FgPp2A and very weakly with FgSit4. Furthermore, FgRrd2 activates FgPp2A via regulating FgPp2A methylation. Phenotypic assays showed that FgRrd1 and FgRrd2 regulate mycelial growth, conidiation, sexual development, and lipid droplet biogenesis. More importantly, both FgRrd1 and FgRrd2 interact with RNA polymerase II, subsequently modulating its enrichments at the promoters of mycotoxin biosynthesis genes, which is independent on PP2A. In addition, FgRrd2 modulates response to phenylpyrrole fungicide, via regulating the phosphorylation of kinase FgHog1 in the high-osmolarity glycerol pathway, and to caffeine, via modulating FgPp2A methylation. Taken together, results of this study indicate that FgRrd1 and FgRrd2 regulate multiple physiological processes via different regulatory mechanisms in F. graminearum, which provides a novel insight into understanding the biological functions of PTPAs in fungi.


2016 ◽  
Vol 306 (8) ◽  
pp. 642-651 ◽  
Author(s):  
Annegret Wiedemann ◽  
Anja Spadinger ◽  
Axel Löwe ◽  
Allison Seeger ◽  
Frank Ebel

mSphere ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Kylie J. Boyce ◽  
Cunwei Cao ◽  
Alex Andrianopoulos

ABSTRACT This is the first study in a dimorphic fungal pathogen to investigate the role of a response regulator downstream of two-component signaling systems and its connection to the high-osmolarity glycerol pathway. This study will inspire further research into the downstream components of two-component signaling systems and their role during pathogenic growth. For successful infection to occur, a pathogen must be able to evade or tolerate the host’s defense systems. This requires the pathogen to first recognize the host environment and then signal this response to elicit a complex adaptive program in order to activate its own defense strategies. In both prokaryotes and eukaryotes, two-component signaling systems are utilized to sense and respond to changes in the external environment. The hybrid histidine kinases (HHKs) at the start of the two-component signaling pathway have been well characterized in human pathogens. However, how these HHKs regulate processes downstream currently remains unclear. This study describes the role of a response regulator downstream of these HHKs, sskA, in Talaromyces marneffei, a dimorphic human pathogen. sskA is required for asexual reproduction, hyphal morphogenesis, cell wall integrity, osmotic adaptation, and the morphogenesis of yeast cells both in vitro at 37°C and during macrophage infection, but not during dimorphic switching. Comparison of the ΔsskA mutant with a strain in which the mitogen-activated protein kinase (MAPK) of the high-osmolarity glycerol pathway (SakA) has been deleted suggests that SskA acts upstream of this pathway in T. marneffei to regulate these morphogenetic processes. This was confirmed by assessing the amount of phosphorylated SakA in the ΔsskA mutant, antifungal resistance due to a lack of SakA activation, and the ability of a constitutively active sakA allele (sakAF316L ) to suppress the ΔsskA mutant phenotypes. We conclude that SskA regulates morphogenesis and osmotic stress adaptation in T. marneffei via phosphorylation of the SakA MAPK of the high-osmolarity glycerol pathway. IMPORTANCE This is the first study in a dimorphic fungal pathogen to investigate the role of a response regulator downstream of two-component signaling systems and its connection to the high-osmolarity glycerol pathway. This study will inspire further research into the downstream components of two-component signaling systems and their role during pathogenic growth.


Sign in / Sign up

Export Citation Format

Share Document