root excision
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Anthony Bishopp ◽  
Alexander Ware ◽  
Dylan H Jones ◽  
Paulina Flis ◽  
Kellie E Smith ◽  
...  

Duckweeds are morphologically simplified, free floating aquatic monocots comprising both rooted and rootless genera. This has led to the idea that roots in these species may be vestigial, but empirical evidence supporting this is lacking. Here we show that duckweed roots are no longer required for their ancestral role of nutrient uptake. Comparative analyses of nearly all rooted duckweed species revealed a highly reduced anatomy, with greater simplification in the more recently diverged genus Lemna. A series of root excision experiments demonstrated that roots are dispensable for normal growth in Spirodela polyrhiza and Lemna minor. Furthermore, ionomic analyses of fronds in these two species showed little difference in the elemental composition of plants in rooted versus root-excised samples. In comparison, another free-floating member of the Araceae, Pistia stratiotes, which colonized the aquatic environment independently of duckweeds, has retained a more complex root anatomy. Whilst Pistia roots were not absolutely required for growth, their removal inhibited plant growth and resulted in a broad change in the mineral profile of aerial tissues. Collectively, these observations suggest that duckweeds and Pistia may be different stages along a trajectory towards root vestigialisation Given this, along with the striking diversity of root phenotypes, culminating in total loss in the most derived species, we propose that duckweed roots are a powerful system with which to understand organ loss and vestigiality.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1378
Author(s):  
Xi Wei ◽  
Yanpeng Ding ◽  
Ye Wang ◽  
Fuguang Li ◽  
Xiaoyang Ge

In plants, light is an important environmental signal that induces meristem development and interacts with endogenous signals, including hormones. We found that treatment with 24 h of low-fluence red light (24 h R) or 24 h of darkness (24 h D) following root excision greatly increased the frequency of shoot generation, while continuous low-fluence red light in callus and shoot induction stages blocked the explants’ ability to generate shoots. Shoot generation ability was closely associated with WUS expression and distribution pattern. 1-N-naphthylphtalamic acid (NPA) disrupted the dynamic distribution of the WUS signal induced by early 24 h R treatment, and NPA plus 24 R treatment increased the average shoot number compared with early 24 h R alone. Transcriptome analysis revealed that differentially expressed genes involved in meristem development and hormone signal pathways were significantly enriched during 24 R or 24 D induced shoot regeneration, where early 24 h R or 24 h D treatment upregulated expression of WOX5, LBD16, LBD18 and PLT3 to promote callus initiation and formation of root primordia, and also activated WUS, STM, CUC1 and CUC2 expression, leading to initiation of the shoot apical meristem (SAM). This finding demonstrates that early exposure of explants to transient low-fluence red light or darkness modulates the expression of marker genes related with callus development and shoot regeneration, and dynamic distribution of WUS, leading to an increased ability to generate shoots.


HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1340-1346 ◽  
Author(s):  
Xin Zhao ◽  
Qianru Liu ◽  
M. Tatiana Sanchez ◽  
Nicholas S. Dufault

Fusarium wilt of watermelon can be effectively managed by grafting with resistant rootstocks. Excision and regeneration of grafted seedling roots is a common practice among cucurbit-grafting nurseries that has not been thoroughly examined. The objectives of this study were to compare the performance of grafted and nongrafted watermelon plants under both greenhouse and field conditions when inoculated with Fusarium oxysporum f. sp. niveum (FON) race 2, and assess the effect of root excision on growth of grafted plants with Cucurbita moschata and Cucurbita maxima × C. moschata rootstocks. Two greenhouse experiments (Fall 2015 and Spring 2016) and one field trial (Spring 2016) of seedless watermelon ‘Melody’ were conducted in this study. In both greenhouse experiments, inoculated, nongrafted watermelon plants showed a significantly higher percentage of recovered Fusarium spp. colonies (70% to 75%) compared with grafted treatments (0% to 7.5%). Some plant growth measurements, including the longest vine length and aboveground fresh and dry weight, indicated less vigorous growth for nongrafted plants compared with the grafted treatments. Significantly higher percent recovery of Fusarium spp. below the graft union was observed in the grafted plants with root excision and regeneration treatment (3.7%) in contrast to the intact root treatment (0.5%), suggesting that the root excision method may possibly create entry points for FON infections. Overall, the root excision treatment showed little influence on aboveground growth and root characteristics of grafted plants. Yield of grafted watermelon with FON inoculation in the fumigated field trial was significantly higher than that of noninoculated, nongrafted ‘Melody’ (NGM) control as reflected by the increase of fruit number and size. Averaged over all the grafted treatments, the increase in marketable fruit number and weight reached 108.3% and 240.9%, respectively, and the total fruit number and weight increase was at 80.0% and 237.2%, respectively. However, grafted plants also exhibited greater levels of root-knot nematode infestation as indicated by the significantly higher root galling ratings. Results from this study demonstrated that grafting with squash rootstocks can effectively limit FON colonization in seedless watermelon plants, although more research in rootstock selection and testing is needed to optimize the use of grafted plants for improving plant growth and fruit yield.


2015 ◽  
Vol 25 (6) ◽  
pp. 706-713 ◽  
Author(s):  
Wenjing Guan ◽  
Xin Zhao

Grafting has been used for controlling certain soilborne diseases and improving abiotic stress tolerance in muskmelon (Cucumis melo) production. Grafting methods may vary considerably among geographic regions and nurseries, while excision of rootstock roots before graft healing may also be practiced, which allows root regeneration of the grafted plants. In this greenhouse study, four grafting methods including hole insertion, one-cotyledon, noncotyledon, and tongue approach methods were examined for their impacts on plant growth and root characteristics of ‘Athena’ muskmelon grafted onto ‘Strong Tosa’ interspecific hybrid squash rootstock (Cucurbita maxima × C. moschata). Nongrafted rootstock and scion plants were included as controls. Both the grafted and nongrafted plants were examined with or without root excision. The practice of root excision was unsuccessful with the tongue approach method, while it did not exhibit significant effects on graft quality and growth of plants grafted with the one-cotyledon and hole insertion methods. Grafted plants with root excision started to show active and rapid root regeneration at 8 days after grafting (DAG) and reached similar root length and surface area as the root-intact plants at 16 DAG. Plants grafted with the noncotyledon method showed a different root growth pattern with decreased root length and surface area at 16 DAG. As a result, this method reduced the quality of grafted plants. No significant differences in plant growth characteristics were observed among the hole insertion, one-cotyledon, and tongue approach grafted plants.


2013 ◽  
Vol 39 (8) ◽  
pp. 1462
Author(s):  
Wei-Feng WANG ◽  
Xiao-Qing YANG ◽  
Sui-Qi ZHANG ◽  
Lun SHAN

2007 ◽  
Vol 31 (2) ◽  
pp. 300-304 ◽  
Author(s):  
WANG Zhen-Yu ◽  
◽  
◽  
Lü Jin-Yin ◽  
LI Feng-Min ◽  
...  

2004 ◽  
Vol 42 (3) ◽  
pp. 251-255 ◽  
Author(s):  
Lidia B. Vysotskaya ◽  
Tatyana N. Arkhipova ◽  
Leila N. Timergalina ◽  
Aleksandr V. Dedov ◽  
Stanislav Yu. Veselov ◽  
...  

2004 ◽  
Vol 27 (1) ◽  
pp. 69-77 ◽  
Author(s):  
L. B. VYSOTSKAYA ◽  
G. R. KUDOYAROVA ◽  
S. VESELOV ◽  
H. G. JONES

Sign in / Sign up

Export Citation Format

Share Document