scholarly journals Duckweed roots are dispensable and are on a trajectory toward vestigiality

2022 ◽  
Author(s):  
Anthony Bishopp ◽  
Alexander Ware ◽  
Dylan H Jones ◽  
Paulina Flis ◽  
Kellie E Smith ◽  
...  

Duckweeds are morphologically simplified, free floating aquatic monocots comprising both rooted and rootless genera. This has led to the idea that roots in these species may be vestigial, but empirical evidence supporting this is lacking. Here we show that duckweed roots are no longer required for their ancestral role of nutrient uptake. Comparative analyses of nearly all rooted duckweed species revealed a highly reduced anatomy, with greater simplification in the more recently diverged genus Lemna. A series of root excision experiments demonstrated that roots are dispensable for normal growth in Spirodela polyrhiza and Lemna minor. Furthermore, ionomic analyses of fronds in these two species showed little difference in the elemental composition of plants in rooted versus root-excised samples. In comparison, another free-floating member of the Araceae, Pistia stratiotes, which colonized the aquatic environment independently of duckweeds, has retained a more complex root anatomy. Whilst Pistia roots were not absolutely required for growth, their removal inhibited plant growth and resulted in a broad change in the mineral profile of aerial tissues. Collectively, these observations suggest that duckweeds and Pistia may be different stages along a trajectory towards root vestigialisation Given this, along with the striking diversity of root phenotypes, culminating in total loss in the most derived species, we propose that duckweed roots are a powerful system with which to understand organ loss and vestigiality.

2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Luis Paulo Silveira Alves ◽  
Fernanda Plucani do Amaral ◽  
Daewon Kim ◽  
Maritza Todo Bom ◽  
Manuel Piñero Gavídia ◽  
...  

ABSTRACTHerbaspirillum seropedicaeis an endophytic bacterium that establishes an association with a variety of plants, such as rice, corn, and sugarcane, and can significantly increase plant growth.H. seropedicaeproduces polyhydroxybutyrate (PHB), stored in the form of insoluble granules. Little information is available on the possible role of PHB in bacterial root colonization or in plant growth promotion. To investigate whether PHB is important for the association ofH. seropedicaewith plants, we inoculated roots ofSetaria viridiswithH. seropedicaestrain SmR1 and mutants defective in PHB production (ΔphaP1, ΔphaP1ΔphaP2, ΔphaC1, and ΔphaR) or mobilization (ΔphaZ1ΔphaZ2). The strains producing large amounts of PHB colonized roots, significantly increasing root area and the number of lateral roots compared to those of PHB-negative strains.H. seropedicaegrows under microaerobic conditions, which can be found in the rhizosphere. When grown under low-oxygen conditions, only the parental strain and ΔphaP2mutant exhibited normal growth. The lack of normal growth under low oxygen correlated with the inability to stimulate plant growth, although there was no effect on the level of root colonization. The data suggest that PHB is produced in the root rhizosphere and plays a role in maintaining normal metabolism under microaerobic conditions. To confirm this, we screened for green fluorescent protein (GFP) expression under the control of theH. seropedicaepromoters of the PHA synthase and PHA depolymerase genes in the rhizosphere. PHB synthesis is active on the root surface and later PHB depolymerase expression is activated.IMPORTANCEThe application of bacteria as plant growth promoters is a sustainable alternative to mitigate the use of chemical fertilization in agriculture, reducing negative economic and environmental impacts. Several plant growth-promoting bacteria synthesize and accumulate the intracellular polymer polyhydroxybutyrate (PHB). However, the role of PHB in plant-bacterium interactions is poorly understood. In this study, applying the C4 model grassSetaria viridisand several mutants in the PHB metabolism of the endophyteHerbaspirillum seropedicaeyielded new findings on the importance of PHB for bacterial colonization ofS. viridisroots. Taken together, the results show that deletion of genes involved in the synthesis and degradation of PHB reduced the ability of the bacteria to enhance plant growth but with little effect on overall root colonization. The data suggest that PHB metabolism likely plays an important role in supporting specific metabolic routes utilized by the bacteria to stimulate plant growth.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1551
Author(s):  
Naeem Khan ◽  
Shahid Ali ◽  
Muhammad Adnan Shahid ◽  
Adnan Mustafa ◽  
R. Z. Sayyed ◽  
...  

Abiotic stresses, such as drought, salinity, heavy metals, variations in temperature, and ultraviolet (UV) radiation, are antagonistic to plant growth and development, resulting in an overall decrease in plant yield. These stresses have direct effects on the rhizosphere, thus severely affect the root growth, and thereby affecting the overall plant growth, health, and productivity. However, the growth-promoting rhizobacteria that colonize the rhizosphere/endorhizosphere protect the roots from the adverse effects of abiotic stress and facilitate plant growth by various direct and indirect mechanisms. In the rhizosphere, plants are constantly interacting with thousands of these microorganisms, yet it is not very clear when and how these complex root, rhizosphere, and rhizobacteria interactions occur under abiotic stresses. Therefore, the present review attempts to focus on root–rhizosphere and rhizobacterial interactions under stresses, how roots respond to these interactions, and the role of rhizobacteria under these stresses. Further, the review focuses on the underlying mechanisms employed by rhizobacteria for improving root architecture and plant tolerance to abiotic stresses.


2021 ◽  
Vol 759 (1) ◽  
pp. 012025
Author(s):  
R Simarmata ◽  
Nuriyanah ◽  
L Nurjanah ◽  
J R L Sylvia ◽  
T Widowati

Plant Gene ◽  
2021 ◽  
Vol 26 ◽  
pp. 100283
Author(s):  
M. Iqbal R. Khan ◽  
Syed Uzma Jalil ◽  
Priyanka Chopra ◽  
Himanshu Chhillar ◽  
Antonio Ferrante ◽  
...  

Author(s):  
Pratima R. Mokashi ◽  
Srikala Bhandary

Abstract Objective The aim of this narrative review is to highlight the association of ineffective feeding practices with the development of malocclusion in children and the role of a pediatric dentist in identifying the cues and signs of improper feeds, and encourage effective breastfeeding practices. Introduction There has been an ongoing debate on the role of effective breastfeeding in the prevention of malocclusion. Although no specific claim supports the positive impact of the same, a detailed reviewing of the literature helps to identify the method of feeding to be chosen considering health benefits and personal preference. Materials and Methods A broad search of all resources linked to the topic was performed in PubMed, Medline, World Health Organization web site, government web sites, and Google Scholar search engine. Keywords used in the search included breastfeeding, ineffective breastfeeding, bottle feeding, pacifier, and malocclusion. A total of 60 articles published in the period from 2000 to 2019 were segregated. Selected articles comprised original research, meta-analysis, and systematic reviews. Results Parameters such as duration, posture, and non-nutritive sucking habits had an impact on effective breastfeeding. Discussion Effective breastfeeding and maintaining appropriate posture and duration helps to positively impact the normal growth and development of the jaws, muscular functioning, and speech. Thereby, the risk of developing malocclusion in primary dentition can be prevented. Conclusion An understanding of the role of breastfeeding and malocclusion will help in the early intervention and prevention of malocclusion and deviated muscular function. Highlighting the role of counseling and effective feeding practices is also an area that should be focused upon by budding clinicians.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 371
Author(s):  
Emily Medina ◽  
Su-Hwa Kim ◽  
Miriam Yun ◽  
Won-Gyu Choi

In natural ecosystems, plants are constantly exposed to changes in their surroundings as they grow, caused by a lifestyle that requires them to live where their seeds fall. Thus, plants strive to adapt and respond to changes in their exposed environment that change every moment. Heat stress that naturally occurs when plants grow in the summer or a tropical area adversely affects plants’ growth and poses a risk to plant development. When plants are subjected to heat stress, they recognize heat stress and respond using highly complex intracellular signaling systems such as reactive oxygen species (ROS). ROS was previously considered a byproduct that impairs plant growth. However, in recent studies, ROS gained attention for its function as a signaling molecule when plants respond to environmental stresses such as heat stress. In particular, ROS, produced in response to heat stress in various plant cell compartments such as mitochondria and chloroplasts, plays a crucial role as a signaling molecule that promotes plant growth and triggers subsequent downstream reactions. Therefore, this review aims to address the latest research trends and understandings, focusing on the function and role of ROS in responding and adapting plants to heat stress.


2021 ◽  
pp. 126809
Author(s):  
Sayanta Mondal ◽  
Krishnendu Pramanik ◽  
Sudip Kumar Ghosh ◽  
Priyanka Pal ◽  
Tanushree Mondal ◽  
...  

2021 ◽  
pp. 1-24
Author(s):  
Jan M. Wit ◽  
Sjoerd D. Joustra ◽  
Monique Losekoot ◽  
Hermine A. van Duyvenvoorde ◽  
Christiaan de Bruin

The current differential diagnosis for a short child with low insulin-like growth factor I (IGF-I) and a normal growth hormone (GH) peak in a GH stimulation test (GHST), after exclusion of acquired causes, includes the following disorders: (1) a decreased spontaneous GH secretion in contrast to a normal stimulated GH peak (“GH neurosecretory dysfunction,” GHND) and (2) genetic conditions with a normal GH sensitivity (e.g., pathogenic variants of <i>GH1</i> or <i>GHSR</i>) and (3) GH insensitivity (GHI). We present a critical appraisal of the concept of GHND and the role of 12- or 24-h GH profiles in the selection of children for GH treatment. The mean 24-h GH concentration in healthy children overlaps with that in those with GH deficiency, indicating that the previously proposed cutoff limit (3.0–3.2 μg/L) is too high. The main advantage of performing a GH profile is that it prevents about 20% of false-positive test results of the GHST, while it also detects a low spontaneous GH secretion in children who would be considered GH sufficient based on a stimulation test. However, due to a considerable burden for patients and the health budget, GH profiles are only used in few centres. Regarding genetic causes, there is good evidence of the existence of Kowarski syndrome (due to <i>GH1</i> variants) but less on the role of <i>GHSR</i> variants. Several genetic causes of (partial) GHI are known (<i>GHR</i>, <i>STAT5B</i>, <i>STAT3</i>, <i>IGF1</i>, <i>IGFALS</i> defects, and Noonan and 3M syndromes), some responding positively to GH therapy. In the final section, we speculate on hypothetical causes.


Sign in / Sign up

Export Citation Format

Share Document