corneal fibroblast
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 2)

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1682
Author(s):  
Vincent Yeung ◽  
Sriniwas Sriram ◽  
Jennifer A. Tran ◽  
Xiaoqing Guo ◽  
Audrey E. K. Hutcheon ◽  
...  

Corneal fibrosis (or scarring) occurs in response to ocular trauma or infection, and by reducing corneal transparency, it can lead to visual impairment and blindness. Studies highlight important roles for transforming growth factor (TGF)-β1 and -β3 as modulators in corneal wound healing and fibrosis, leading to increased extracellular matrix (ECM) components and expression of α-smooth muscle actin (αSMA), a myofibroblast marker. In this study, human corneal fibroblasts (hCF) were cultured as a monolayer culture (2D) or on poly-transwell membranes to generate corneal stromal constructs (3D) that were treated with TGF-β1, TGF-β3, or TGF-β1 + FAK inhibitor (FAKi). Results show that hCF 3D constructs treated with TGF-β1 or TGF-β3 impart distinct effects on genes involved in wound healing and fibrosis—ITGAV, ITGB1, SRC and ACTA2. Notably, in the 3D construct model, TGF-β1 enhanced αSMA and focal adhesion kinase (FAK) protein expression, whereas TGF-β3 did not. In addition, in both the hCF 2D cell and 3D construct models, we found that TGF-β1 + FAKi attenuated TGF-β1-mediated myofibroblast differentiation, as shown by abrogated αSMA expression. This study concludes that FAK signaling is important for the onset of TGF-β1-mediated myofibroblast differentiation, and FAK inhibition may provide a novel beneficial therapeutic avenue to reduce corneal scarring.


2021 ◽  
Vol 10 (12) ◽  
pp. 23
Author(s):  
Atsuhiko Fukuto ◽  
Soohyun Kim ◽  
Jennifer Kang ◽  
Brooke L. Gates ◽  
Maggie W. Chang ◽  
...  

2021 ◽  
Author(s):  
Alexandra A. Silverman ◽  
Seyed Mohammad Siadat ◽  
Jason D. Olszewski ◽  
Jeffrey W. Ruberti

During development, mesenchymal cells direct the elaboration of extracellular matrix that shapes the initial animal bauplan which subsequently grows to produce mechanically-competent structure. To gain insight into the processes that initiate matrix formation at the cellular level, high temporal and spatial resolution videos were obtained from a primary human corneal fibroblast (PHCF) cell culture system known to produce an organized, collagenous stroma similar to a human cornea. The images were taken over a 4-day period prior to culture confluency which permitted a clear view of the cell kinematics and any elaborated filaments. The movies reveal an active cellular system in which the PHCFs execute five types of high-velocity and high extensional strain-rate 'pulls' that produce persistent filaments. In four of the pull types, average maximum strain rates (~0.1-0.33s-1) were adequate to induce aggregation and/or crystallization in crowded biopolymer systems. The results demonstrate that PHCFs have the capacity to mechanically induce the formation of biopolymer structures intercellularly and in the path of force.


Author(s):  
Adrián Ramírez-Granillo ◽  
Luis Antonio Bautista-Hernández ◽  
Víctor Manuel Bautista-De Lucío ◽  
Fátima Sofía Magaña-Guerrero ◽  
Alfredo Domínguez-López ◽  
...  

BackgroundCoinfections with fungi and bacteria in ocular pathologies are increasing at an alarming rate. Two of the main etiologic agents of infections on the corneal surface, such as Aspergillus fumigatus and Staphylococcus aureus, can form a biofilm. However, mixed fungal–bacterial biofilms are rarely reported in ocular infections. The implementation of cell cultures as a study model related to biofilm microbial keratitis will allow understanding the pathogenesis in the cornea. The cornea maintains a pathogen-free ocular surface in which human limbo-corneal fibroblast cells are part of its cell regeneration process. There are no reports of biofilm formation assays on limbo-corneal fibroblasts, as well as their behavior with a polymicrobial infection.ObjectiveTo determine the capacity of biofilm formation during this fungal–bacterial interaction on primary limbo-corneal fibroblast monolayers.ResultsThe biofilm on the limbo-corneal fibroblast culture was analyzed by assessing biomass production and determining metabolic activity. Furthermore, the mixed biofilm effect on this cell culture was observed with several microscopy techniques. The single and mixed biofilm was higher on the limbo-corneal fibroblast monolayer than on abiotic surfaces. The A. fumigatus biofilm on the human limbo-corneal fibroblast culture showed a considerable decrease compared to the S. aureus biofilm on the limbo-corneal fibroblast monolayer. Moreover, the mixed biofilm had a lower density than that of the single biofilm. Antibiosis between A. fumigatus and S. aureus persisted during the challenge to limbo-corneal fibroblasts, but it seems that the fungus was more effectively inhibited.ConclusionThis is the first report of mixed fungal–bacterial biofilm production and morphological characterization on the limbo-corneal fibroblast monolayer. Three antibiosis behaviors were observed between fungi, bacteria, and limbo-corneal fibroblasts. The mycophagy effect over A. fumigatus by S. aureus was exacerbated on the limbo-corneal fibroblast monolayer. During fungal–bacterial interactions, it appears that limbo-corneal fibroblasts showed some phagocytic activity, demonstrating tripartite relationships during coinfection.


2021 ◽  
Vol 118 ◽  
pp. 111430
Author(s):  
Zahra Hajian Foroushani ◽  
S. Sharareh Mahdavi ◽  
Mohammad J. Abdekhodaie ◽  
Alireza Baradaran-Rafii ◽  
Mohammad reza Tabatabei ◽  
...  

2020 ◽  
Vol 27 (10) ◽  
pp. 979-988
Author(s):  
Kyu-Yeon Han ◽  
Jin-Hong Chang ◽  
Dimitri T. Azar

Background: Exosomes secreted by corneal fibroblasts contain matrix metalloproteinase (MMP) 14, which is known to influence pro-MMP2 accumulation on exosomes. Accordingly, we hypothesized that the enzymatic activity of MMP14 may alter the protein content of corneal fibroblast- secreted exosomes. Objective: The aim of this study was to investigate the effects of MMP14 on the composition and biological activity of corneal fibroblast-derived exosomes. Methods: Knock out of the catalytic domain (ΔExon4) of MMP14 in corneal fibroblasts was used to determine the effect of MMP14 expression on the characteristics of fibroblast-secreted exosomes. The amount of secreted proteins and their size distribution were measured using Nano Tracking Analysis. Proteins within exosomes from wild-type (WT) and ΔExon4-deficient fibroblasts were identified by liquid chromatography-tandem mass spectrometry (MS/MS) proteomics analysis. The proteolytic effects of MMP14 were evaluated in vitro via MS identification of eliminated proteins. The biological functions of MMP14-carrying exosomes were investigated via fusion to endothelial cells and flow cytometric assays. Results: Exosomes isolated from WT and ΔExon4-deficient fibroblasts exhibited similar size distributions and morphologies, although WT fibroblasts secreted a greater amount of exosomes. The protein content, however, was higher in ΔExon4-deficient fibroblast-derived exosomes than in WT fibroblast-derived exosomes. Proteomics analysis revealed that WT-derived exosomes included proteins that regulated cell migration, and ΔExon4 fibroblast-derived exosomes contained additional proteins that were cleaved by MMP14. Conclusion: Our findings suggest that MMP14 expression influences the protein composition of exosomes secreted by corneal fibroblasts, and through those biological components, MMP14 in corneal fibroblasts derived-exosomes may regulate corneal angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document