A hybrid scaffold of gelatin glycosaminoglycan matrix and fibrin as a carrier of human corneal fibroblast cells

2021 ◽  
Vol 118 ◽  
pp. 111430
Author(s):  
Zahra Hajian Foroushani ◽  
S. Sharareh Mahdavi ◽  
Mohammad J. Abdekhodaie ◽  
Alireza Baradaran-Rafii ◽  
Mohammad reza Tabatabei ◽  
...  
2020 ◽  
Vol 27 (10) ◽  
pp. 979-988
Author(s):  
Kyu-Yeon Han ◽  
Jin-Hong Chang ◽  
Dimitri T. Azar

Background: Exosomes secreted by corneal fibroblasts contain matrix metalloproteinase (MMP) 14, which is known to influence pro-MMP2 accumulation on exosomes. Accordingly, we hypothesized that the enzymatic activity of MMP14 may alter the protein content of corneal fibroblast- secreted exosomes. Objective: The aim of this study was to investigate the effects of MMP14 on the composition and biological activity of corneal fibroblast-derived exosomes. Methods: Knock out of the catalytic domain (ΔExon4) of MMP14 in corneal fibroblasts was used to determine the effect of MMP14 expression on the characteristics of fibroblast-secreted exosomes. The amount of secreted proteins and their size distribution were measured using Nano Tracking Analysis. Proteins within exosomes from wild-type (WT) and ΔExon4-deficient fibroblasts were identified by liquid chromatography-tandem mass spectrometry (MS/MS) proteomics analysis. The proteolytic effects of MMP14 were evaluated in vitro via MS identification of eliminated proteins. The biological functions of MMP14-carrying exosomes were investigated via fusion to endothelial cells and flow cytometric assays. Results: Exosomes isolated from WT and ΔExon4-deficient fibroblasts exhibited similar size distributions and morphologies, although WT fibroblasts secreted a greater amount of exosomes. The protein content, however, was higher in ΔExon4-deficient fibroblast-derived exosomes than in WT fibroblast-derived exosomes. Proteomics analysis revealed that WT-derived exosomes included proteins that regulated cell migration, and ΔExon4 fibroblast-derived exosomes contained additional proteins that were cleaved by MMP14. Conclusion: Our findings suggest that MMP14 expression influences the protein composition of exosomes secreted by corneal fibroblasts, and through those biological components, MMP14 in corneal fibroblasts derived-exosomes may regulate corneal angiogenesis.


2013 ◽  
Vol 21 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Nathan Unsworth ◽  
Raymond Dawson ◽  
John Wade ◽  
Chun-Qiang Liu

2019 ◽  
Vol 15 ◽  
Author(s):  
Thais Batista Fernandes ◽  
Natanael Dante Segretti ◽  
Felipe Rebello Lourenço ◽  
Thalita Marcílio Cândido ◽  
André Rolim Baby ◽  
...  

Background: Antimicrobial resistance is a persistent problem about infections treatment and carries needing for develop new antimicrobial agents. Inhibiting of bacterial β-ketoacyl acyl carrier protein synthase III (FabH), which catalyzes the condensation reaction between a CoA-attached acetyl group and an ACP-attached malonyl group in bacteria is an interesting strategy to find new antibacterial agents. Objective: The aim of this work was to design and synthesize arylsulfonylhydrazones potentially FabH inhibitors and evaluate their antimicrobial activity. Methods: MIC50 of sulfonylhydrazones against E. coli and S. aureus was determined. Antioxidant activity was evaluated by DPPH (1-1’-diphenyl-2-picrylhydrazyl) assay and cytotoxicity against LL24 lung fibroblast cells was verified by MTT method. Principal component analysis (PCA) was performed in order to suggest a structure-activity relationship. Molecular docking allowed to propose sulfonylhydrazones interactions with FabH. Results: The most active compound showed activity against S. aureus and E. coli, with MIC50 = 0.21 and 0.44 µM, respectively. PCA studies correlated better activity to lipophilicity and molecular docking indicated that sulfonylhydrazone moiety is important to hydrogen-bond with FabH while methylcatechol ring performs π-π stacking interaction. The DPPH assay revealed that some sulfonylhydrazones derived from the methylcatechol series had antioxidant activity. None of the evaluated compounds was cytotoxic to human lung fibroblast cells, suggesting that the compounds might be considered safe at the tested concentration. Conclusion: Arylsufonylhydrazones is a promising scaffold to be explored for design of new antimicrobial agents.


Author(s):  
Zeinab Abedian ◽  
Niloofar Jenabian ◽  
Ali Akbar Moghadamnia ◽  
Ebrahim Zabihi ◽  
Roghayeh Pourbagher ◽  
...  

Objective/ Background: Cancer is still the most common cause of morbidity in world and new powerful anticancer agents without severe side effects from natural sources is important. Methods: The evaluation of cytotoxicity and apoptosis induction was carried out in MCF-7,HeLa and Saos-2 as cancerous cell lines with different histological origin and human fibroblast served as control normal cell. The cells were treated with different concentrations of chitosan and the cytotoxicity was determined using MTT assay after 24, 48 and 72 h .The mode of death was evaluated by flow cytometry . Results: While both types of chitosan showed significant concentration-dependently cytotoxic effects against the three cancerous cell lines, fibroblast cells showed somehow more compatibility with chitosan. On the other hand, there were no significant differences between LMWC and HMWC cytotoxicity in all cell lines. The flow cytometry results showed the apoptosis pattern of death more in Saos-2 and HeLa while necrosis was more observable with MCF7. Also higher viability with both types of chitosan was seen in fibroblast as normal cells Conclusion: Chitosan shows anticancerous effect against 3 cancerous cell lines, while it is compatible with normal diploid fibroblast cells. Furthermore, it seems that the molecular weight of chitosan does not affect its anticancerous property.


Sign in / Sign up

Export Citation Format

Share Document