scholarly journals Establishment of appropriate glaucoma models using dexamethasone or TGFβ2 treated three-dimension (3D) cultured human trabecular meshwork (HTM) cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Megumi Watanabe ◽  
Yosuke Ida ◽  
Hiroshi Ohguro ◽  
Chiaki Ota ◽  
Fumihito Hikage

AbstractTo establish appropriate ex vivo models for a glaucomatous trabecular meshwork (TM), two-dimensional (2D) and three-dimensional (3D) cultures of human trabecular meshwork cells (HTM) were prepared in the presence of 250 nM dexamethasone (DEX) or 5 ng/mL TGFβ2, and characterized by the following analyses; transendothelial electrical resistance (TEER) measurements, FITC dextran permeability, scanning electron microscopy and the expression of the extracellular matrix (ECM) including collagen (COL)1, 4 and 6, and fibronectin (FN), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase (TIMP)1–4, and matrix metalloproteinase (MMP)2, 9 and 14. DEX and TGFβ2 both caused a significant increase or decrease in the TEER values and FITC dextran permeability. During the 3D spheroid culture, DEX or TGFβ2 induced a mild and significant down-sizing and an increase in stiffness, respectively. TGFβ2 induced a significant up-regulation of COL1 and 4, FN, α-SMA, and MMP 2 and 14 (2D) or COL1 and 6, and TIMP2 and 3 (3D), and DEX induced a significant up-regulation of FN (3D) and TIMP4 (2D and 3D). The findings presented herein indicate that DEX or TGFβ2 resulted in mild and severe down-sized and stiff 3D HTM spheroids, respectively, thus making them viable in vitro HTM models for steroid-induced and primary open angle glaucoma.

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 930
Author(s):  
Megumi Watanabe ◽  
Yosuke Ida ◽  
Masato Furuhashi ◽  
Yuri Tsugeno ◽  
Hiroshi Ohguro ◽  
...  

The objective of the current study was to perform a screening of the drug-induced effects of the prostaglandin F2α (PGF2α) and EP2 agonist, omidenepag (OMD), using two- and three-dimensional (2D and 3D) cultures of dexamethasone (DEX)-treated human trabecular meshwork (HTM) cells. The drug-induced effects on 2D monolayers were characterized by measuring the transendothelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)–dextran permeability, the physical properties of 3D spheroids, and the gene expression of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4 and 6, and fibronectin (FN), α smooth muscle actin (αSMA), a tissue inhibitor of metalloproteinase (TIMP) 1–4, matrix metalloproteinase (MMP) 2, 9 and 14 and endoplasmic reticulum (ER) stress-related factors. DEX induced a significant increase in TEER values and a decrease in FITC–dextran permeability, respectively, in the 2D HTM monolayers, and these effects were substantially inhibited by PGF2α and OMD. Similarly, DEX also caused decreased sizes and an increased stiffness in the 3D HTM spheroids, but PGF2α or OMD had no effects on the stiffness of the spheroids. Upon exposure to DEX, the following changes were observed: the upregulation of COL4 (2D), αSMA (2D), and TIMP4 (2D and 3D) and the downregulation of TIMP1 and 2 (3D), MMP2 and 14 (3D), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6) (2D), and glucose regulator protein (GRP)78 (3D). In the presence of PGF2α or OMD, the downregulation of COL4 (2D), FN (3D), αSMA (2D), TIMP3 (3D), MMP9 (3D) and the CCAAT/enhancer-binding protein homologous protein (CHOP) (2D), and the upregulation of TIMP4 (2D and 3D), MMP2, 9 and 14 (2D), respectively, were observed. The findings presented herein suggest that 2D and 3D cell cultures can be useful in screening for the drug-induced effects of PGF2α and OMD toward DEX-treated HTM cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Megumi Watanabe ◽  
Yosuke Ida ◽  
Hiroshi Ohguro ◽  
Chiaki Ota ◽  
Fumihito Hikage

AbstractA pan-ROCK-inhibitor, ripasudil (Rip), and a ROCK2 inhibitor, KD025, were used To study the effects of Rho-associated coiled-coil containing protein kinase (ROCK)1 and 2 on two-dimensional (2D) and three-dimensional (3D) cultures of a TGFβ2-treated human trabecular meshwork (HTM) cells. In the presence of 5 ng/mL TGFβ2, the effects of these inhibitors were characterized by transendothelial electrical resistance (TEER), FITC-dextran permeability, and the size and stiffness of 3D sphenoids, the expression of extracellular matrix (ECM) including collagen1, 4 and 6, and fibronectin, α-smooth muscle actin, a tissue inhibitor of metalloproteinase (TIMP)1–4, and matrix metalloproteinase (MMP)2, 9 and 14. TGFβ2 caused a significant increase in the TEER values, and decrease in FITC-dextran permeability, as well as a decrease in the sizes and stiffness of the 3D sphenoids. In the presence of ROCK inhibitors, the TGFβ2-induced effects of the TEER and FITC-dextran permeability were inhibited, especially by KD025. Rip induced a significant increase in sizes and a decrease in the stiffness of the TGFβ2-treated 3D sphenoids, although the effects of KD025 were weaker. Gene expressions of most of the ECMs, TIMP2 and MMP9 of 2D and 3D HTM cells were significantly up-regulated by TGFβ2. Those were significantly and differently modulated by Rip or KD025.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0221942 ◽  
Author(s):  
Stefania Vernazza ◽  
Sara Tirendi ◽  
Sonia Scarfì ◽  
Mario Passalacqua ◽  
Francesco Oddone ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1371
Author(s):  
Xiaochen Fan ◽  
Emine K. Bilir ◽  
Olivia A. Kingston ◽  
Rachel A. Oldershaw ◽  
Victoria R. Kearns ◽  
...  

Glaucoma is one of the leading causes of vision loss worldwide, characterised with irreversible optic nerve damage and progressive vision loss. Primary open-angle glaucoma (POAG) is a subset of glaucoma, characterised by normal anterior chamber angle and raised intraocular pressure (IOP). Reducing IOP is the main modifiable factor in the treatment of POAG, and the trabecular meshwork (TM) is the primary site of aqueous humour outflow (AH) and the resistance to outflow. The structure and the composition of the TM are key to its function in regulating AH outflow. Dysfunction and loss of the TM cells found in the natural ageing process and more so in POAG can cause abnormal extracellular matrix (ECM) accumulation, increased TM stiffness, and increased IOP. Therefore, repair or regeneration of TM’s structure and function is considered as a potential treatment for POAG. Cell transplantation is an attractive option to repopulate the TM cells in POAG, but to develop a cell replacement approach, various challenges are still to be addressed. The choice of cell replacement covers autologous or allogenic approaches, which led to investigations into TM progenitor cells, induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) as potential stem cell source candidates. However, the potential plasticity and the lack of definitive cell markers for the progenitor and the TM cell population compound the biological challenge. Morphological and differential gene expression of TM cells located within different regions of the TM may give rise to different cell replacement or regenerative approaches. As such, this review describes the different approaches taken to date investigating different cell sources and their differing cell isolation and differentiation methodologies. In addition, we highlighted how these approaches were evaluated in different animal and ex vivo model systems and the potential of these methods in future POAG treatment.


2021 ◽  
Vol 14 (9) ◽  
pp. 858
Author(s):  
Saray Tabak ◽  
Valeria Feinshtein ◽  
Sofia Schreiber-Avissar ◽  
Elie Beit-Yannai

Primary open-angle glaucoma is established by the disruption of trabecular meshwork (TM) function. The disruption leads to increased resistance to the aqueous humor (AH), generated by the non-pigmented ciliary epithelium (NPCE). Extracellular vesicles (EVs) participate in the communication between the NPCE and the TM tissue in the ocular drainage system. The potential use of NPCE-derived EVs to deliver siRNA to TM cells has scarcely been explored. NPCE-derived EVs were isolated and loaded with anti-fibrotic (SMAD7) siRNA. EV’s structural integrity and siRNA loading efficiency were estimated via electron microscopy and fluorescence. Engineered EVs were added to pre-cultured TM cells and qRT-PCR was used to verify the transfer of selected siRNA to the cells. Western blot analysis was used to evaluate the qualitative effects on Wnt-TGFβ2 proteins’ expression. EVs loaded with exogenous siRNA achieved a 53% mRNA knockdown of SMAD7 in TM cells, resulting in a significant elevation in the levels of β-Catenin, pGSK3β, N-Cadherin, K-Cadherin, and TGFβ2 proteins in TM cells. NPCE-derived EVs can be used for efficient siRNA molecule delivery into TM cells, which may prove to be beneficial as a therapeutic target to lower intraocular pressure (IOP).


2018 ◽  
Vol 45 (2) ◽  
pp. 783-794 ◽  
Author(s):  
Laura Duffy ◽  
Steven O’Reilly

Background/Aims: The Trabecular meshwork (TM) is the tissue responsible for outflow resistance and therefore intraocular pressure. TM cells contain a contractile apparatus that is composed of actin stress fibres which run parallel to the axis of the cell and are responsible for facilitating contraction. Cross-Linked Actin Networks (CLANs) are polygonal arrangements of actin that form a geodesic network found predominantly in TM cells both in situ and in vitro. The aim of this work is to determine the functional significance of CLANs in TM cells and to assess the effect of mechanical stretch stimulation on the induction (or not) of CLANs. Methods: We used collagen gel contraction models to demonstrate functional impairment of cells when induced to express CLANs in situ. Cyclic mechanical stretch was used to stimulate cells and measure CLANs Results: CLANs inhibited contraction and cyclic mechanical stretch induced CLANs. Furthermore, we also demonstrated that using shape alone we could predict the appearance of CLANs using a simple light microscopy technique. Conclusion: Taken together we have now shown, for the first time, a functional deficit In TM cells with CLANs Furthermore that shape alone can predict the appearance of CLAN containing cells. CLANs can now be linked to a functional effect and may underlie the appearance of CLANs with the pathology of primary open angle glaucoma (POAG).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nozomi Igarashi ◽  
Megumi Honjo ◽  
Makoto Aihara

AbstractWe examined the effects of mTOR inhibitors on the fibrotic response induced by transforming growth factor-beta2 (TGF-β2) in cultured human trabecular meshwork (hTM) cells. TGF-β2-induced expression of fibronectin, collagen type I, alpha 1 chain (COL1A1), and alpha-smooth muscle actin (αSMA) in hTM cells was examined in the presence or absence of mTOR inhibitors using quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. The migration rates of hTM cells were examined in the presence of TGF-β2 with or without mTOR inhibitors. An in vitro study showed that the expression of fibronectin, COL1A1, and αSMA was upregulated by TGF-β2 treatment of hTM cells; such upregulation was significantly suppressed by mTOR inhibitors. The inhibitors significantly reduced the migration rate of TGF-β2-stimulated hTM cells. mTOR inhibitors may usefully reduce the fibrotic response of hTM cells and we may have to explore if it is also effective in in vivo model.


Author(s):  
Normie Aida Mohd Nasir ◽  
Renu Agarwal ◽  
Anna Krasilnikova ◽  
Siti Hamimah Sheikh Abdul Kadir ◽  
Igor Iezhitsa

AbstractObjectivesSteroid-induced ocular hypertension and glaucoma are associated with extracellular matrix remodeling at the trabecular meshwork (TM) of the eye due to reduced secretion of matrix metalloproteinases (MMPs), a family of enzymes regulating extracellular matrix proteolysis. Several biological functions of steroids are known to involve regulation of adenosine A1 receptors (A1AR) and nuclear factor kappa B (NFKB). Since MMPs expression in TM has been shown to be regulated by A1AR as well as transcription factors, it is likely that dexamethasone-induced changes in aqueous humor dynamics involve reduced MMP and A1AR expression and reduced NFKB activation. Hence, the current study investigated the association of dexamethasone-induced reduction in MMP secretion with reduced NFKB activation and A1AR expression.MethodsHuman trabecular meshwork cells (HTMCs) were characterized by estimating myocilin and alpha smooth muscle actin expression and then were treated with dexamethasone 100 nM for 2, 5 and 7 days. The MMP secretion was estimated in culture media using Western blot. Immunocytochemistry (ICC) and ELISA were done to investigate the effect of dexamethasone on NFKB phosphorylation. A1AR expression in HTMCs was determined using Western blot and ELISA.ResultsDexamethasone caused a significant reduction in both MMP-2 and -9 expression compared to untreated group after five and seven days but not after two days of culture. Significantly reduced phosphorylated NFKB and A1AR protein levels were detected in dexamethasone treated compared to vehicle treated HTMCs after five days of culture.ConclusionsDexamethasone reduces MMP-2 and -9 secretion by HTMCs and this effect of dexamethasone is associated with reduced NFKB phosphorylation and A1AR expression.


2020 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
April Nettesheim ◽  
Myoung Sup Shim ◽  
Angela Dixon ◽  
Urmimala Raychaudhuri ◽  
Haiyan Gong ◽  
...  

Extracellular matrix (ECM) deposition in the trabecular meshwork (TM) is one of the hallmarks of glaucoma, a group of human diseases and leading cause of permanent blindness. The molecular mechanisms underlying ECM deposition in the glaucomatous TM are not known, but it is presumed to be a consequence of excessive synthesis of ECM components, decreased proteolytic degradation, or both. Targeting ECM deposition might represent a therapeutic approach to restore outflow facility in glaucoma. Previous work conducted in our laboratory identified the lysosomal enzyme cathepsin B (CTSB) to be expressed on the cellular surface and to be secreted into the culture media in trabecular meshwork (TM) cells. Here, we further investigated the role of CTSB on ECM remodeling and outflow physiology in vitro and in CSTBko mice. Our results indicate that CTSB localizes in the caveolae and participates in the pericellular degradation of ECM in TM cells. We also report here a novel role of CTSB in regulating the expression of PAI-1 and TGFβ/Smad signaling in TM cells vitro and in vivo in CTSBko mice. We propose enhancing CTSB activity as a novel therapeutic target to attenuate fibrosis and ECM deposition in the glaucomatous outflow pathway.


2021 ◽  
Vol 13 ◽  
pp. 175883592110598
Author(s):  
Inken Flörkemeier ◽  
Tamara N. Steinhauer ◽  
Nina Hedemann ◽  
Magnus Ölander ◽  
Per Artursson ◽  
...  

Background: Ovarian cancer (OvCa) constitutes a rare and highly aggressive malignancy and is one of the most lethal of all gynaecologic neoplasms. Due to chemotherapy resistance and treatment limitations because of side effects, OvCa is still not sufficiently treatable. Hence, new drugs for OvCa therapy such as P8-D6 with promising antitumour properties have a high clinical need. The benzo[ c]phenanthridine P8-D6 is an effective inductor of apoptosis by acting as a dual topoisomerase I/II inhibitor. Methods: In the present study, the effectiveness of P8-D6 on OvCa was investigated in vitro. In various OvCa cell lines and ex vivo primary cells, the apoptosis induction compared with standard therapeutic agents was determined in two-dimensional monolayers. Expanded by three-dimensional and co-culture, the P8-D6 treated cells were examined for changes in cytotoxicity, apoptosis rate and membrane integrity via scanning electron microscopy (SEM). Likewise, the effects of P8-D6 on non-cancer human ovarian surface epithelial cells and primary human hepatocytes were determined. Results: This study shows a significant P8-D6-induced increase in apoptosis and cytotoxicity in OvCa cells which surpasses the efficacy of well-established drugs like cisplatin or the topoisomerase inhibitors etoposide and topotecan. Non-cancer cells were affected only slightly by P8-D6. Moreover, no hepatotoxic effect in in vitro studies was detected. Conclusion: P8-D6 is a strong and rapid inductor of apoptosis and might be a novel treatment option for OvCa therapy.


Sign in / Sign up

Export Citation Format

Share Document