advanced persistent threats
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 106)

H-INDEX

21
(FIVE YEARS 5)

2021 ◽  
Vol 15 (1) ◽  
pp. 20
Author(s):  
Robert Karamagi

Phishing has become the most convenient technique that hackers use nowadays to gain access to protected systems. This is because cybersecurity has evolved and low-cost systems with the least security investments will need quite advanced and sophisticated mechanisms to be able to penetrate technically. Systems currently are equipped with at least some level of security, imposed by security firms with a very high level of expertise in managing the common and well-known attacks. This decreases the possible technical attack surface. Nation-states or advanced persistent threats (APTs), organized crime, and black hats possess the finance and skills to penetrate many different systems. However, they are always in need of the most available computing resources, such as central processing unit (CPU) and random-access memory (RAM), so they normally hack and hook computers into a botnet. This may allow them to perform dangerous distributed denial of service (DDoS) attacks and perform brute force cracking algorithms, which are highly CPU intensive. They may also use the zombie or drone systems they have hacked to hide their location on the net and gain anonymity by bouncing off around them many times a minute. Phishing allows them to gain their stretch of compromised systems to increase their power. For a normal hacker without the money to invest in sophisticated techniques, exploiting the human factor, which is the weakest link to security, comes in handy. The possibility of successfully manipulating the human into releasing the security that they set up makes the life of the hacker very easy, because they do not have to try to break into the system with force, rather the owner will just open the door for them. The objective of the research is to review factors that enhance phishing and improve the probability of its success. We have discovered that hackers rely on triggering the emotional effects of their victims through their phishing attacks. We have applied the use of artificial intelligence to be able to detect the emotion associated with a phrase or sentence. Our model had a good accuracy which could be improved with the use of a larger dataset with more emotional sentiments for various phrases and sentences. Our technique may be used to check for emotional manipulation in suspicious emails to improve the confidence interval of suspected phishing emails.


2021 ◽  
Vol 13 (6) ◽  
pp. 23-36
Author(s):  
Ruo Ando ◽  
Youki Kadobayashi ◽  
Hiroki Takakura ◽  
Hiroshi Itoh

Recently, APT (Advanced Persistent Threats) groups are using the COVID-19 pandemic as part of their cyber operations. In response to cyber threat actors, IoCs (Indicators of Compromise) are being provided to help us take some countermeasures. In this paper, we analyse how the coronavirus-based cyber attack unfolded on the academic infrastructure network SINET (The Science Information Network) based on the passive measurement with IoC. SINET is Japan's academic information infrastructure network. To extract and analyze the traffic patterns of the COVID-19 attacker group, we implemented a data flow pipeline for handling huge session traffic data observed on SINET. The data flow pipeline provides three functions: (1) identification the direction of the traffic, (2) filtering the port numbers, and (3) generation of the time series data. From the output of our pipeline, it is clear that the attacker's traffic can be broken down into several patterns. To name a few, we have witnessed (1) huge burstiness (port 25: FTP and high port applications), (3) diurnal patterns (port 443: SSL), and (3) periodic patterns with low amplitude (port 25: SMTP) We can conclude that some unveiled patterns by our pipeline are informative to handling security operations of the academic backbone network. Particularly, we have found burstiness of high port and unknown applications with the number of session data ranging from 10,000 to 35,000. For understanding the traffic patterns on SINET, our data flow pipeline can utilize any IoC based on the list of IP address for traffic ingress/egress identification and port filtering.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Amir Mohammadzade Lajevardi ◽  
Morteza Amini

AbstractTargeted cyber attacks, which today are known as Advanced Persistent Threats (APTs), use low and slow patterns to bypass intrusion detection and alert correlation systems. Since most of the attack detection approaches use a short time-window, the slow APTs abuse this weakness to escape from the detection systems. In these situations, the intruders increase the time of attacks and move as slowly as possible by some tricks such as using sleeper and wake up functions and make detection difficult for such detection systems. In addition, low APTs use trusted subjects or agents to conceal any footprint and abnormalities in the victim system by some tricks such as code injection and stealing digital certificates. In this paper, a new solution is proposed for detecting both low and slow APTs. The proposed approach uses low-level interception, knowledge-based system, system ontology, and semantic correlation to detect low-level attacks. Since using semantic-based correlation is not applicable for detecting slow attacks due to its significant processing overhead, we propose a scalable knowledge-based system that uses three different concepts and approaches to reduce the time complexity including (1) flexible sliding window called Vermiform window to analyze and correlate system events instead of using fixed-size time-window, (2) effective inference using a scalable inference engine called SANSA, and (3) data reduction by ontology-based data abstraction. We can detect the slow APTs whose attack duration is about several months. Evaluation of the proposed approach on a dataset containing many APT scenarios shows 84.21% of sensitivity and 82.16% of specificity.


2021 ◽  
Vol 13 (22) ◽  
pp. 12384
Author(s):  
Zeeshan Hussain ◽  
Adnan Akhunzada ◽  
Javed Iqbal ◽  
Iram Bibi ◽  
Abdullah Gani

The Industrial Internet of things (IIoT) is the main driving force behind smart manufacturing, industrial automation, and industry 4.0. Conversely, industrial IoT as the evolving technological paradigm is also becoming a compelling target for cyber adversaries. Particularly, advanced persistent threats (APT) and especially botnets are the foremost promising and potential attacks that may throw the complete industrial IoT network into chaos. IIoT-enabled botnets are highly scalable, technologically diverse, and highly resilient to classical and conventional detection mechanisms. Subsequently, we propose a deep learning (DL)-enabled novel hybrid architecture that can efficiently and timely tackle distributed, multivariant, lethal botnet attacks in industrial IoT. The proposed approach is thoroughly evaluated on a current state-of-the-art, publicly available dataset using standard performance evaluation metrics. Moreover, our proposed technique has been precisely verified with our constructed hybrid DL-enabled architectures and current benchmark DL algorithms. Our devised mechanism shows promising results in terms of high detection accuracy with a trivial trade-off in speed efficiency, assuring the proposed scheme as an optimal and legitimate cyber defense in prevalent IIoTs. Besides, we have cross-validated our results to show utterly unbiased performance.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012037
Author(s):  
Luoli Wang

Abstract Advanced Persistent Threats (APT) have caused severe damage to the core information infrastructure of many governments and organizations. APT attacks usually remain low and slow which makes them difficult to be detected. In this case, the way of correlatively analyzing massive logs generated by various security devices for effectively detecting the new type of cyber threat turns out to be more and more significant. In this paper, on the basis of analyzing the principles and characteristics of APT, we propose an intelligent threat detection method based on the expanded Cyber Attack Chain (CAC) model and the long short-term memory network (LSTM) autoencoder to extensively correlate malicious behaviors from spatial and temporal dimensions, which provides a brain new idea for the application and practice of complex network attack detection.


2021 ◽  
pp. 81-92
Author(s):  
Colton D. Hood

Clinical information systems are becoming increasingly complex, and telehealth is no exception. Threats to information systems are far and wide including phishing, malware, ransomware and even advanced persistent threats. Maintaining good security practices is necessary in order to secure telehealth and other clinical information systems. Compliance with the HIPAA Security Rule is mandatory, while providing a practical framework for good security practices and self-guidance that ensure basic compliance to all covered entities regardless of their level of IT support. Good security practices are essential to build trust in the telehealth system for both providers, and clinicians, as well as patients.


Information ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 405
Author(s):  
Mike Nkongolo ◽  
Jacobus Philippus van Deventer ◽  
Sydney Mambwe Kasongo

This research attempts to introduce the production methodology of an anomaly detection dataset using ten desirable requirements. Subsequently, the article presents the produced dataset named UGRansome, created with up-to-date and modern network traffic (netflow), which represents cyclostationary patterns of normal and abnormal classes of threatening behaviours. It was discovered that the timestamp of various network attacks is inferior to one minute and this feature pattern was used to record the time taken by the threat to infiltrate a network node. The main asset of the proposed dataset is its implication in the detection of zero-day attacks and anomalies that have not been explored before and cannot be recognised by known threats signatures. For instance, the UDP Scan attack has been found to utilise the lowest netflow in the corpus, while the Razy utilises the highest one. In turn, the EDA2 and Globe malware are the most abnormal zero-day threats in the proposed dataset. These feature patterns are included in the corpus, but derived from two well-known datasets, namely, UGR’16 and ransomware that include real-life instances. The former incorporates cyclostationary patterns while the latter includes ransomware features. The UGRansome dataset was tested with cross-validation and compared to the KDD99 and NSL-KDD datasets to assess the performance of Ensemble Learning algorithms. False alarms have been minimized with a null empirical error during the experiment, which demonstrates that implementing the Random Forest algorithm applied to UGRansome can facilitate accurate results to enhance zero-day threats detection. Additionally, most zero-day threats such as Razy, Globe, EDA2, and TowerWeb are recognised as advanced persistent threats that are cyclostationary in nature and it is predicted that they will be using spamming and phishing for intrusion. Lastly, achieving the UGRansome balance was found to be NP-Hard due to real life-threatening classes that do not have a uniform distribution in terms of several instances.


Sign in / Sign up

Export Citation Format

Share Document