scholarly journals Multi-objective Bayesian topology optimization of a lattice-structured heat sink in natural convection

Author(s):  
Koji Shimoyama ◽  
Atsuki Komiya

AbstractAdditive manufacturing (AM) has an affinity with topology optimization to think of various designs with complex structures. Hence, this paper aims to optimize the design of a lattice-structured heat sink, which can be manufactured by AM. The design objectives are to maximize the thermal performance of convective heat transfer in natural convection simulated by computational fluid dynamics (CFD) and to minimize the material cost required for AM process at the same time. The lattice structure is represented as a node/edge system via graph theory with a moderate number of design variables. Bayesian optimization, which employs the non-dominated sorting genetic algorithm II and the Kriging surrogate model, is conducted to search for better designs with the minimum CFD cost. The present topology optimization successfully finds better lattice-structured heat sink designs than a reference fin-structured design regarding thermal performance and material cost. Also, several optimized lattice-structured designs outperform reference pin-fin-structured designs regarding thermal performance though the pin-fin structure is still advantageous for a material cost-oriented design. This paper also discusses the flow mechanism observed in the heat sink to explain how the optimized heat sink structure satisfies the competing design objectives simultaneously.

2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


Heat Transfer ◽  
2020 ◽  
Vol 49 (8) ◽  
pp. 5038-5049
Author(s):  
Vinous M. Hameed ◽  
Maha A. Hussein ◽  
Hussein T. Dhaiban

Author(s):  
H. Y. Zhang ◽  
Xiao Yan ◽  
W. H. Zhu ◽  
Leon Lin

2.5-D package with through silicon vias (TSVs) on interposer has been envisioned as the most viable way in heterogeneous integration. In this work, several design approaches are considered in the thermal analysis and enhancements of a 2.5-D package with multi chips on through silicon interposer (TSI), which include overmolding materials, metal slug, lid attachment, pin fin heat sink and fan-driven heat sink cooling. The analysis models consist of two dummy flip chips on a silicon interposer to represent the logic die and memory die, respectively. Package submodels, especially the TSV ones, are analyzed with good modeling accuracy. Package thermal modeling indicates that the thermal conductivity of the epoxy overmolding has minimal effect on the thermal performance of copper slug package. Lid attachment further enhances the thermal performance through peripheral substrate attachment. Both designs largely rely on thermally conductive PCB (4L) to maximize power dissipation. Pin-fin heat sink, made of aluminum, can be mounted on the package top to further minimize thermal resistance and extend the power dissipation beyond 10W. For high power application, fan cooled heat sink is used to reduce excessive heat. Copper based aluminum heat sink can remove the heat of 120W from the bare-die package. Self heating due to high current density through the TSV is analyzed. The proposed analytical expression gives good prediction on the local TSV hot spot. It is demonstrated that a distributed TSV network design provides lower temperature rise, which shall have lower risk of failures and is preferred in practice.


Sign in / Sign up

Export Citation Format

Share Document