domain of applicability
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 18)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Leonardo de la Cruz ◽  
Andres Luna ◽  
Trevor Scheopner

Abstract We obtain a conservative Hamiltonian describing the interactions of two charged bodies in Yang-Mills through $$ \mathcal{O}\left({\alpha}^2\right) $$ O α 2 and to all orders in velocity. Our calculation extends a recently-introduced framework based on scattering amplitudes and effective field theory (EFT) to consider color-charged objects. These results are checked against the direct integration of the observables in the Kosower-Maybee-O’Connell (KMOC) formalism. At the order we consider we find that the linear and color impulses in a scattering event can be concisely described in terms of the eikonal phase, thus extending the domain of applicability of a formula originally proposed in the context of spinning particles.


2021 ◽  
Author(s):  
Chaitanya Gokhale ◽  
Nikhil Sharma

Abstract Rotating crops is a sustainable agricultural technique that has been at the disposal of humanity since time immemorial. Switching between cover crops and cash crops allows the fields avoids overexploitation due to intensive farming. How often the respite is to be provided and what is the optimum cash cover rotation in terms of maximising yield schedule is a long-standing question tackled on multiple fronts by agricultural scientists, economists, biologists and computer scientists, to name a few. Dealing with the uncertainty in the field due to diseases, pests, droughts, floods, and impending effects of climate change, is important to consider when designing the cropping strategy. Analysing this time-tested technique of crop rotations with a new lens of Parrondo's paradox allows us to improve upon the technique and use it in synchronisation with the burning questions of contemporary times. By calculating optimum switching probabilities in a randomised cropping sequence, suggesting the optimum deterministic sequences and judicious use of fertilisers, we propose methods for improving crop yield and the eventual profit margins for farmers. Overall we also extend the domain of applicability of the seemingly unintuitive paradox by Parrondo, where two losing situations can be combined eventually into a winning scenario.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1196
Author(s):  
Iseult Lynch ◽  
Penny Nymark ◽  
Philip Doganis ◽  
Mary Gulumian ◽  
Tae-Hyun Yoon ◽  
...  

Nanotoxicology is a relatively new field of research concerning the study and application of nanomaterials to evaluate the potential for harmful effects in parallel with the development of applications. Nanotoxicology as a field spans materials synthesis and characterisation, assessment of fate and behaviour, exposure science, toxicology / ecotoxicology, molecular biology and toxicogenomics, epidemiology, safe and sustainable by design approaches, and chemoinformatics and nanoinformatics, thus requiring scientists to work collaboratively, often outside their core expertise area. This interdisciplinarity can lead to challenges in terms of interpretation and reporting, and calls for a platform for sharing of best-practice in nanotoxicology research. The F1000Research Nanotoxicology collection, introduced via this editorial, will provide a place to share accumulated best practice, via original research reports including no-effects studies, protocols and methods papers, software reports and living systematic reviews, which can be updated as new knowledge emerges or as the domain of applicability of the method, model or software is expanded. This editorial introduces the Nanotoxicology Collection in F1000Research. The aim of the collection is to provide an open access platform for nanotoxicology researchers, to support an improved culture of data sharing and documentation of evolving protocols, biological and computational models, software tools and datasets, that can be applied and built upon to develop predictive models and move towards in silico nanotoxicology and nanoinformatics. Submissions will be assessed for fit to the collection and subjected to the F1000Research open peer review process.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Shibendu Gupta Choudhury ◽  
Ananda Dasgupta ◽  
Narayan Banerjee

AbstractA recent attempt to arrive at a quantum version of Raychaudhuri’s equation is looked at critically. It is shown that the method, and even the idea, has some inherent problems. The issues are pointed out here. We have also shown that it is possible to salvage the method in some limited domain of applicability. Although no generality can be claimed, a quantum version of the equation should be useful in the context of ascertaining the existence of a singularity in the quantum regime. The equation presented in the present work holds for arbitrary $$n+1$$ n + 1 dimensions. An important feature of the Hamiltonian in the operator form is that it admits a self-adjoint extension quite generally. Thus, the conservation of probability is ensured.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Ram Gopal Vishwakarma

AbstractAn attempt is made to uncover the physical meaning and significance of the obscure Lanczos tensor field which is regarded as a potential of the Weyl field. Despite being a fundamental building block of any metric theory of gravity, the Lanczos tensor has not been paid proper attention as it deserves. By providing an elucidation on this tensor field through its derivation in some particularly chosen spacetimes, we try to find its adequate interpretation. Though the Lanczos field is traditionally introduced as a gravitational analogue of the electromagnetic 4-potential field, the performed study unearths its another feature – a relativistic analogue of the Newtonian gravitational force field. A new domain of applicability of the Lanczos tensor is introduced which corroborates this new feature of the tensor.


Author(s):  
Michele Loi ◽  
Andrea Ferrario ◽  
Eleonora Viganò

Abstract In this paper we argue that transparency of machine learning algorithms, just as explanation, can be defined at different levels of abstraction. We criticize recent attempts to identify the explanation of black box algorithms with making their decisions (post-hoc) interpretable, focusing our discussion on counterfactual explanations. These approaches to explanation simplify the real nature of the black boxes and risk misleading the public about the normative features of a model. We propose a new form of algorithmic transparency, that consists in explaining algorithms as an intentional product, that serves a particular goal, or multiple goals (Daniel Dennet’s design stance) in a given domain of applicability, and that provides a measure of the extent to which such a goal is achieved, and evidence about the way that measure has been reached. We call such idea of algorithmic transparency “design publicity.” We argue that design publicity can be more easily linked with the justification of the use and of the design of the algorithm, and of each individual decision following from it. In comparison to post-hoc explanations of individual algorithmic decisions, design publicity meets a different demand (the demand for impersonal justification) of the explainee. Finally, we argue that when models that pursue justifiable goals (which may include fairness as avoidance of bias towards specific groups) to a justifiable degree are used consistently, the resulting decisions are all justified even if some of them are (unavoidably) based on incorrect predictions. For this argument, we rely on John Rawls’s idea of procedural justice applied to algorithms conceived as institutions.


2020 ◽  
Author(s):  
Kai Zhu ◽  
Janet Paulsen ◽  
Ed Miller ◽  
Kenneth Borrelli ◽  
Matthew Grisewood ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 283-295
Author(s):  
Alexander V. Sokolov ◽  
Vladimir V. Voloshinov

AbstractThe technology of formal quantitative estimation of the conformity of mathematical models to the available dataset is presented. The main purpose of the technology is to make the model selection decision-making process easier for the researcher. The method is a combination of approaches from the areas of data analysis, optimization and distributed computing including: cross-validation and regularization methods, algebraic modeling in optimization and methods of optimization, automatic discretization of differential and integral equations, and optimization REST-services. The technology is illustrated by a demo case study. A general mathematical formulation of the method is presented. It is followed by a description of the main aspects of algorithmic and software implementation. The list of success stories of the presented approach is substantial. Nevertheless, the domain of applicability and important unresolved issues are discussed.


2020 ◽  
Vol 50 (1) ◽  
pp. 71-103
Author(s):  
Dane Morgan ◽  
Ryan Jacobs

Advances in machine learning have impacted myriad areas of materials science, such as the discovery of novel materials and the improvement of molecular simulations, with likely many more important developments to come. Given the rapid changes in this field, it is challenging to understand both the breadth of opportunities and the best practices for their use. In this review, we address aspects of both problems by providing an overview of the areas in which machine learning has recently had significant impact in materials science, and then we provide a more detailed discussion on determining the accuracy and domain of applicability of some common types of machine learning models. Finally, we discuss some opportunities and challenges for the materials community to fully utilize the capabilities of machine learning.


Author(s):  
Christopher Sutton ◽  
Mario Boley ◽  
Luca M. Ghiringhelli ◽  
Matthias Rupp ◽  
Jilles Vreeken ◽  
...  

We present an extension to the usual machine learning process that allows for the identification of the domain of applicability of a fitted model, i.e., the region in its domain where it performs most accurately. This approach is applied to several vastly different but commonly used materials representations (namely the n-gram approach, SOAP, and the many body tenor representation), which are practically indistinguishable based on performance using a single error statistic. Moreover, these models appear unsatisfactory for screening applications as they fail to reliably identify the ground state polymorphs. When applying our newly developed analysis for each of the models, we can identify the domain of applicability for each model according to a simple set of interpretable conditions. We show that identification of the domain of applicability in the prediction of the formation energy enables a more accurate ground-state search - a crucial step for the discovery of novel materials.


Sign in / Sign up

Export Citation Format

Share Document