scholarly journals Applying Some Indices for Soil Pollution Assessment in Northern Industrial Area from Erbil Governorate

2021 ◽  
Vol 26 (4) ◽  
pp. 45-58
Author(s):  
Nashmeel Khudhur ◽  
Sidra Qubad Yassin ◽  
Ahmed Saman Hassan ◽  
Mortatha Nawzad Omar

Soil pollution by some heavy metals including: Cr, Mn, Fe, Ni, Cu, Zn, As, Mo, Cd and Pb from northern industrial area of Erbil City was assessed. The contamination indices including: geoaccumulation (Igeo), contamination factor (CF), enrichment factor (EF), degree of contamination (Cdeg), pollution load index (PLI) and element contamination index (ECI) were applied to assess soil pollution in Erbil North Industrial area at three sites (for both surface and sub-surface soils). Maximum Fe value 34243.6 ppm was recorded in sub-surface soil (site 2). Maximum values 265.4, 248.8, 98.23 and 397.45 ppm were recorded for Cr, Ni, Cu and Zn at sub-surface soil (site 3). Whereas, maximum values of 22.52, 5.36, 23.9, 6.12 and 65.67 ppm were recorded for As, Mo, Ag, Cd and Pb at surface soil (site 3). Results of analysed heavy metals for soil Cr, Mn, Fe, Ni, Cu, Zn, As, Mo, Ag, Cd and Pb have shown that the studied sites were severely contaminated with Cd, so the maximum detected Cd concentration was 6.12 ppm in surface soil (300 meters away from the industrial area). The soil pollution in the studied area was classified as moderate to strong surface and sub-surface soil contamination. Behavioral toxicity experiment showed slight growth effect on Lepidium sativum L.

2020 ◽  
Vol 53 (2E) ◽  
pp. 36-61
Author(s):  
Ahmed Al-Obeidi

Soil pollution adversely affects the safety and health of the human being. The main objective of the study is to determine the concentrations of heavy metals (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) in surface soil in Al-Hawija, southwestern Kirkuk. Twenty-one samples were collected and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to measure the content of heavy metals and assess the soil pollution by using the contamination factor, degree of contamination, geoaccumulation index, pollution load index and ecological risk index (RI). The results indicate that there is high pollution by lead, chromium and copper (78.8, 87.4 and 53.8 mg/kg) respectively, in industrial areas due to anthropogenic sources with the presence of significant ecological risk (Er) of the lead (116) in site S7, due to its high concentrations, while size fraction analysis indicated that all heavy metals are concentrated in the fine parts as a result of adsorption processes by clay minerals.


2017 ◽  
Vol 3 (01) ◽  
pp. 25-31 ◽  
Author(s):  
Charu Gangwar ◽  
Aprajita Singh ◽  
Raina Pal ◽  
Atul Kumar ◽  
Saloni Sharma ◽  
...  

E-waste is a popular name given to those electronic products nearing the end of their useful life which has become a major source of heavy metal contamination in soil and hence, became the global concern. Various samples of soil were collected from different sites and were determined for heavy metal analysis by the ICP-AAS after the digestion process. The main source of contamination is illegal e-waste recycling activities such as burning of PCB's acid baths etc. Different soil indices like contamination factor, I-geo, pollution load index, were calculated to determine the quality of the soil. Results indicate that e-waste recycling and industrial area are strongly contaminated by the heavy metals. Physiological analysis of soil revealed that e-waste processing and industrial activities decrease the soil pH and organic matter while enhancing the electrical conductivity of soil. The exceedance of metal contamination imposed negative impact to the soil environment and human health.


2015 ◽  
Vol 17 (1) ◽  
pp. 148-161

<div> <p>Two greenhouse pot experiments were conducted in Agrinion, Greece. The impact of treated municipal wastewater (TMWW) and sludge (i) on the growth of <em>Lactuca sativa</em> L. var Longifolia (lettuce) and (ii) on the extent of soil pollution with heavy metals was studied. Soil pollution was assessed by calculating the Pollution Load Index (PLI). Both of these experiments were conducted, using a randomized block design in four replications and seven treatments, respectively, as follows: (a) Experiment A: study of the effect of treated municipal wastewater (TMWW): [Control, 20%, 40%, 60%, 80%, 100%, (100%+30 t/ha Sludge)] and (b) Experiment B: Study of the effect of sludge (t/ha): 0, &nbsp;6, 12,&nbsp; 18, 24 , 30, (30+100%TMWW). The sludge affected significantly plant height and fresh and dry matter yield, as well as the dry matter N content of plants, while the TMWW affected significantly the dry matter yield and non-significantly the plant height. The pollution load index (PLI) was non-significant for both treatments (sludge and TMWW). According to PLI calibration scale, the soil was found to be slightly polluted with heavy metals under both treatments.</p> </div> <p>&nbsp;</p>


Tehnika ◽  
2020 ◽  
Vol 75 (4) ◽  
pp. 297-304
Author(s):  
Todor Serafimovski ◽  
Goran Tasev ◽  
Trajce Stafilov

The intense mineral extraction in mining areas during the last several decades has produced a large amount of waste material and tailings, which release toxic elements to the environment. The aim of the study was to determine in two vertical profiles/sections (1 and 2) the heavy metal contents of samples derived from six samples, three from each section located in the porphyry copper mine Buchim area, Republic North Macedonia. The results have been compared to new Dutchlist (DL) and Kabata-Pendias (KP) standards and the following was concluded: As values ranged 14.985÷60.131 mg kg-1 with 4 samples above the target value of the DL (29 mg kg-1 As) and 6 above standard values given in KP value (5 mg kg-1 As), in that context Co values ranged 11 ÷57 mg kg-1 with 6 values above the target value of the DL (9 mg kg-1 Co) and 5 above standard values given in KP value (12 mg kg-1 Co), Cr with range 29.32÷75.76 mg kg-1 with 6 over KP value (10 mg kg-1 Cr) and none above the target value of the DL (100 mg kg-1 Cr), Cu with range 2694÷6749 mg kg-1 with 6 samples above the target value of the DL (36 mg kg-1 Cu) and 6 above standard values given in KP value (20 mg kg-1 Cu), Ni with range 59.57÷105.98 mg kg-1 with 6 samples above the target value of the DL (35 mg kg-1 Ni) and 6 above standard values given in KP value (20 mg kg-1 Ni), Pb with range 27.06 ÷96.08 mg kg-1 with 1 sample above the target value of the DL (85 mg kg-1Pb) and 6 above standard values given in KP value (25 mg kg-1Pb), Zn with range 147÷273 mg kg-1 with 6 over target value of the DL (140 mg kg-1 Zn) and 6 above standard KP value (64 mg kg-1 Zn), V with range 34.44÷92.57 mg kg-1 with 5 over target value of the DL (42 mg kg-1 V) and one above KP value (90 mg kg-1 V).In order to compare the level of contamination, the contamination factor (𝐶𝑓 𝑖 ), degree of contamination (Cd), and pollution load index (PLI) were computed. Serious numbers were found for Cu, as, Zn, Co and Ni, which exceeded standard values at almost all samples from both vertical sections. Compared from section 1 and section 2, pollution load index increased by 13.43%, which in almost all samples was classified as heavily polluted to extremely polluted. The fact that mining activities at the Buchim Mine last for almost 40 years, the presence of heavy metals in soils at a serious level is understandable. The high level of contamination is a result of heavy metal persistence and non-biodegradability.


Author(s):  
Nabil, A. E. Azzaz ◽  
Mokhtar, S. Beheary ◽  
Mohamed, N. Raslan ◽  
Hazem T. Abd El Hamid

In the present study, water and sediment samples were collected from Navigation Canal and from Industrial Zone South Port Said to assess heavy metals contamination. It was shown that, the highest mean concentration of heavy metals in water samples was observed in summer, and the lowest mean was observed in winter. It has been made evident that the industrialization in Industrial Zone South Port Said was responsible for the present deteriorating conditions. However, it was shown that, the highest mean concentration of heavy metals in sediment samples was observed in winter, and the lowest mean was observed in summer. Pollution status was evaluated using some indices: geo-accumulation index (Igeo), contamination factor (CF), pollution load index (PLI) and ecological risk index (RI). Based on Igeo, all metal values were unpolluted. On the basis of the values of CF, sediments are high in winter and low in summer. Metals concentrations were in the following order: Ni > Fe > Mn > Pb > Cu > Zn > Co > Cd. According to CF classification, Ni contamination was considerable. RI of winter season can be classified as moderate pollution. No pollution was classified for PLI in all seasons. The decrease in PLI and RI values were indicated dilution and dispersion of metal content with increasing distance from source areas. It is suggested that PLI can give an indication about the trend spatially and temporarily. In addition, it also provides significant data and advice to the policy and decision makers on the contamination degree of the area.


2019 ◽  
Vol 35 (11-12) ◽  
pp. 688-702
Author(s):  
Dalia Abdel Moneim Kheirallah ◽  
Lamia Mostafa El-Samad ◽  
El Hassan Mostafa Mokhamer ◽  
Karolin Kamel Abdul-Aziz ◽  
Noura Abdel Haleem Toto

The present study used Pimelia latreillei as a biomonitoring insect for heavy metals soil pollution in a populated industrial area at Zawya Abd El-Qader, Alexandria, Egypt. Comet assay and histological analysis were applied to evaluate the potential risk of heavy metals. X-ray analysis of the soil samples collected from the polluted site revealed significantly increased metal percentages compared with the reference site. Moreover, a significant increase in metal percentages was detected by the X-ray analysis in insect ovaries collected from the polluted site. The Tail DNA length was significantly greater in the insects collected from the polluted site—47.6% compared with 11.4% at the reference site. Pronounced disruptions in oogenesis were observed through histological and ultrastructure investigations in insects collected from the polluted site. The study summarized the potential utility of insect biomonitors in predicting the effect of heavy metals soil pollution on occupational health.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
M. Z. H. Khan ◽  
M. R. Hasan ◽  
M. Khan ◽  
S. Aktar ◽  
K. Fatema

The concentrations of major (Si, Al, Ca, Fe, and K) and minor (Cd, Mn, Ni, Pb, U, Zn, Co, Cr, As, Cu, Rb, Sr, and Zr,) elements in the surficial sediments were studied in an attempt to establish their concentration in the Bengal coast. It was revealed that the majority of the trace elements have been introduced into the Bengal marine from the riverine inflows that are also affected by the impact of industrial, ship breaking yard, gas production plant, and urban wastes. The concentration of heavy metals was measured using Atomic Absorption Spectroscopy and Energy Dispersive X-ray fluorescence instruments. The highest concentrations for several trace elements were thus recorded which generally decrease with distance from the coast. It was observed that the heavy metal concentrations in the sediments generally met the criteria of international marine sediment quality. However, both the contamination factor and pollution load index values suggested the elevation of some metals’ concentrations in the region. Constant monitoring of the Bengal coast water quality needs to be recorded with a view to minimizing the risk of health of the population and the detrimental impacts on the aquatic ecosystem.


Author(s):  
K. O. Ondoo ◽  
J. K. Kiptoo ◽  
A. O. Onditi ◽  
S. M. Shivaji ◽  
J. K. Ogilo

Agricultural activities, discharge of raw sewage into farms and the rise in urbanization have greatly contributed to soil pollution. During the rainy season, surface runoff from farms find their way into water bodies and deposits these contaminants into Rivers and Lakes which poses a threat to both aquatic and terrestrial organisms that depend on that water source. The objective of this research was to determine the level of anions and heavy metals from sediments in River Sio, Busia County, Kenya. Five sediment samples were taken from five sampling points and the levels of anions and heavy metals in them determined. Anions were determined using Shimadzu 1800 UV/visible spectrophotometer while heavy metals were determined using Shimadzu 6200 flame atomic absorption spectrophotometer (AAS). Copper, lead and nickel were above the allowed WHO limits while cadmium was below detection limit. The levels of nitrates, phosphates and chlorides were higher during the wet season due to surface runoff that carried these nutrients from the farms and deposited them on the bottom of the River. The levels of heavy metals were high during the dry season due to evaporation of water from the River, leading to an increase in the analyte concentration during the dry season. High levels of copper and nickel in the sediments points to the use of herbicides and pesticides in farming and washing of vehicles and motorcycles on the banks of the River. According to Igeo nickel showed moderate pollution during the dry season. The contamination factor for lead was very high during the dry season, while pollution load index confirmed pollution due to anthropogenic activities in sampling sites 1 – 4 during the dry season and no pollution due to anthropogenic activities during the wet season.  The study recommends reduced use of inorganic fertilizers in order to save the River from the danger of eutrophication. Excessive use of agrochemicals such as herbicides and pesticides should be discouraged. In addition, pesticide leaching and the level of microbes in soil and sediments should be considered for further research


Author(s):  
Sani Daniel Eneji ◽  
Matthew Chijioke Apeh ◽  
Enyojo Samson Okwute ◽  
Alowakennu Micheal ◽  
Kayode Ibrahim Fesomade

This study aims at determining the concentration of heavy metal contaminants in the soil around Dangote cement factory Kogi State, Nigeria. It also seeks to understand the relationship between the heavy metals and the level of concentration with respect to distance and direction as well as the ecological risk it poses. The monitoring and assessment of soil pollution have over the years become a very important area of study due to the significant threat it poses to the food web. A total of 33 soil samples were collected in the Northern, Eastern and Western axis within a radius of 4km of Dangote cement factory at a depth of 0-15cm using a stainless steel auger. The contamination factor indices for Cr and Cu show moderate pollution across all the samples collected from different axis at a different distance from the factory. Zn also pose a moderate pollution across the samples except for WK4 and NK4 where it is in a low level of contamination. The geo-accumulation indices for Pb and Cr show unpolluted to moderately polluted across all samples at different locations expect for sample location EK4. The results of the ecological risk assessment revealed that Cd poses the highest ecological risk of all the five heavy metals investigated.


Sign in / Sign up

Export Citation Format

Share Document