harmonic mixing
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 2)

Nanophotonics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 3535-3544 ◽  
Author(s):  
Laura Mercadé ◽  
Leopoldo L. Martín ◽  
Amadeu Griol ◽  
Daniel Navarro-Urrios ◽  
Alejandro Martínez

AbstractCavity optomechanics has recently emerged as a new paradigm enabling the manipulation of mechanical motion via optical fields tightly confined in deformable cavities. When driving an optomechanical (OM) crystal cavity with a laser blue-detuned with respect to the optical resonance, the mechanical motion is amplified, ultimately resulting in phonon lasing at MHz and even GHz frequencies. In this work, we show that a silicon OM crystal cavity performs as an OM microwave oscillator when pumped above the threshold for self-sustained OM oscillations. To this end, we use an OM cavity designed to have a breathing-like mechanical mode at 3.897 GHz in a full phononic bandgap. Our measurements show that the first harmonic of the detected signal displays a phase noise of ≈−100 dBc/Hz at 100 kHz. Stronger blue-detuned driving leads eventually to the formation of an OM frequency comb, whose lines are spaced by the mechanical frequency. We also measure the phase noise for higher-order harmonics and show that, unlike in Brillouin oscillators, the noise is increased as corresponding to classical harmonic mixing. Finally, we present real-time measurements of the comb waveform and show that it can be fitted to a theoretical model recently presented. Our results suggest that silicon OM cavities could be relevant processing elements in microwave photonics and optical RF processing, in particular in disciplines requiring low weight, compactness and fiber interconnection.


2020 ◽  
Vol 238 ◽  
pp. 11011
Author(s):  
Laura Mércade ◽  
Leopoldo L. Martin ◽  
Amadeu Griol ◽  
Daniel Navarro-Urrios ◽  
Alejandro Martínez

In this work we show that a silicon optomechanical crystal cavity can be used as an optomechanical oscillator when driven to the phonon lasing condition with a blue-detuned laser. The optomechanical cavity is designed to have a breathing like mode vibrating at Ωm/2π =3.897 GHz in a full phononic bandgap. Our measurements show that the first harmonic displays a phase noise of -100 dBc/Hz at 100 kHz. Stronger bluedetuned driving leads eventually to the formation of an optomechanical frequency comb, with lines spaced by the mechanical frequency. The measured phase noise grows up with the harmonic number, as in classical harmonic mixing. We present real-time measurements of the comb waveform and show that it can be adjusted to a theoretical model recently presented. Our results suggest that silicon optomechanical cavities can play a role in integrated microwave photonics.


Author(s):  
Catarina Maçãs ◽  
Ana Rodrigues ◽  
Gilberto Bernardes ◽  
Penousal Machado

This article presents MixMash, an interactive tool which streamlines the process of music mashup creation by assisting users in the process of finding compatible music from a large collection of audio tracks. It extends the harmonic mixing method by Bernardes, Davies and Guedes with novel degrees of harmonic, rhythmic, spectral, and timbral similarity metrics. Furthermore, it revises and improves some interface design limitations identified in the former model software implementation. A new user interface design based on cross-modal associations between musical content analysis and information visualisation is presented. In this graphic model, all tracks are represented as nodes where distances and edge connections display their harmonic compatibility as a result of a force-directed graph. Besides, a visual language is defined to enhance the tool's usability and foster creative endeavour in the search of meaningful music mashups.


Sign in / Sign up

Export Citation Format

Share Document