chylomicron particle
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

2016 ◽  
Vol 115 (5) ◽  
pp. 791-799 ◽  
Author(s):  
Amber M. Milan ◽  
Anu Nuora ◽  
Shikha Pundir ◽  
Chantal A. Pileggi ◽  
James F. Markworth ◽  
...  

AbstractAgeing is associated with a prolonged and exaggerated postprandial lipaemia. This study aimed to examine the contribution of alterations in chylomicron synthesis, size and lipid composition to increased lipaemia. Healthy older (60–75 years; n 15) and younger (20–25 years; n 15) subjects consumed a high-fat breakfast. Chylomicron dynamics and fatty acid composition were analysed for 5 h in the postprandial state. Plasma TAG levels were elevated following the meal in the older subjects, relative to younger subjects (P<0·01). For older subjects compared with younger subjects, circulating chylomicron particle size was smaller (P<0·05), with greater apoB content (P<0·05) at all postprandial time points. However, total chylomicron TAG concentration between the groups was unaltered post-meal. Compared with younger subjects, the older subjects exhibited a greater proportion of oleic acid in the TAG and phospholipid (PL) fraction (P<0·05), plus lower proportions of linoleic acid in the TAG fraction of the chylomicrons (P<0·01). Thus, following the ingestion of a high-fat meal, older individuals demonstrate both smaller, more numerous chylomicrons, with a greater total MUFA and lower PUFA contents. These data suggest that the increased postprandial lipaemia of ageing cannot be attributed to increased chylomicron TAG. Rather, ageing is associated with changes in chylomicron particle size, apoB content and fatty acid composition of the chylomicron TAG and PL fractions.


2012 ◽  
Vol 1 ◽  
Author(s):  
Anthony P. James ◽  
John C. Mamo

AbstractChylomicron particles are continually synthesised and secreted from the intestine even in the absence of ingested fat. It is possible that following consumption of low doses of fat the basal level of chylomicron secretion and subsequent metabolism are sufficient to metabolise this fat without an increase in postprandial chylomicron concentrations. To test this hypothesis, healthy male subjects were randomised to receive, on three separate occasions, meals containing a range of doses of fat (average 8·1–19 g) and effects on postprandial lipaemia and chylomicron concentration were determined. Furthermore, to delineate the effect on lipid-rich v. lipid-poor (remnant) forms lipid levels were also determined in a density <1·006 g/ml fraction. Following consumption of the very low dose of fat the postprandial concentration of chylomicrons was unaltered, whereas following the medium dose postprandial chylomicron concentrations were significantly increased. Interestingly, this increase was only detected in the lipid-rich chylomicron fraction, with postprandial levels of chylomicron remnants remaining unchanged. In conclusion, it appears that consumption of what would be considered low to medium doses of fat are not associated with transient postprandial increases in chylomicron remnants in healthy male subjects.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Gerald H. Tomkin ◽  
Daphne Owens

The B-containing lipoproteins are the transporters of cholesterol, and the evidence suggests that the apo B48-containing postprandial chylomicron particles and the triglyceride-rich very low density lipoprotein (VLDL) particles play an important part in the development of the plaque both directly and indirectly by their impact on LDL composition. The ratio of dietary to synthesised cholesterol is variable but tightly regulated: hence intervention with diet at best reduces serum cholesterol by <20% andusually <10%. Statins are the mainstay of cholesterol reduction therapy, but they increase cholesterol absorption, an example of the relationship between synthesis and absorption. Inhibition of cholesterol absorption with Ezetimibe, an inhibitor of Niemann Pick C1-like 1 (NPC1-L1), the major regulator of cholesterol absorption, increases cholesterol synthesis and hence the value of adding an inhibitor of cholesterol absorption to an inhibitor of cholesterol synthesis. Apo B48, the structural protein of the chylomicron particle, is synthesised in abundance so that the release of these particles is dependent on the amount of cholesterol and triglyceride available in the intestine. This paper will discuss cholesterol absorption and synthesis, chylomicron formation, and the effect of postprandial lipoproteins on factors involved in atherosclerosis.


2003 ◽  
Vol 166 (1) ◽  
pp. 73-84 ◽  
Author(s):  
K.D.Renuka R Silva ◽  
Colette N.M Kelly ◽  
Amanda E Jones ◽  
Ruth D Smith ◽  
Stephen A Wootton ◽  
...  

2002 ◽  
Vol 3 (3) ◽  
pp. 171-178 ◽  
Author(s):  
Catherine Phillips ◽  
Claire Madigan ◽  
Daphne Owens ◽  
Patrick Collins ◽  
Gerald H. Tomkin

Chylomicron metabolism is abnormal in diabetes and the chylomicron particle may play a very important role in atherosclerosis. The aim of this study was to examine the effect of diabetes on the metabolism of chylomicrons in cholesterol-fed alloxan diabetic and nondiabetic rabbits. Five diabetic rabbits and 5 control rabbits were given [C14]linoleic acid and [H3]cholesterol by gavage. Lymph was collected following cannulation of the lymph duct and radiolabelled chylomicrons were isolated by ultracentrifugation. The chylomicrons from each animal were injected into paired control and diabetic recipients. Lymph apolipoprotein (apo) B48, apo B100, and apo E were measured using sodium dodecyl sulfate–polyacrylamide gradient gel electrophoresis. Mean blood sugar of the diabetic donors and diabetic recipients were 19.7 ± 2.3 and 17.2 ± 3.2 mmol/L. Diabetic rabbits had significantly raised plasma triglyceride (10.8 ± 13.9 versus 0.8 ± 0.5 mmol/L,P< 0.02). There was a large increase in apo B48 in lymph chylomicrons in the diabetic donor animals (0.19 ± 0.10 versus 0.04 ± 0.02 mg/h,P< 0.01) and apo B100 (0.22 ± 0.15 versus 0.07 ± 0.07 mg/h,P< 0.05) and a reduction in apo E on the lymph chylomicron particle (0.27 ± 0.01 versus 0.62 ± 0.07 mg/mg apo B,P< 0.001). Diabetic recipients cleared both control and diabetic chylomicron triglyceride significantly more slowly than control recipients (P< 0.05). Clearance of control chylomicron cholesterol was delayed when injected into diabetic recipients compared to when these chylomicrons were injected into control recipients (P< 0.005). Clearance of diabetic chylomicron cholesterol was significantly slower when injected into control animals compared to control chylomicron injected into control animals (P< 0.02). In this animal model of atherosclerosis, we have demonstrated that diabetes leads to the production of an increased number of lipid and apo E–deficient chylomicron particles. Chylomicron particles from the control animals were cleared more slowly by the diabetic recipient (both triglyceride and cholesterol). The chylomicron particles obtained from the diabetic animals were cleared even more slowly when injected into the diabetic recipient. Although there was an initial delay in clearance of chylomicron triglyceride from the diabetic particle when injected into the control animals, the clearance over the first 15 minutes was not significantly different when compared to the control chylomicron injected into the control animal. On the other hand, the cholesterol clearance was significantly delayed. Thus, diabetes resulted in the production of an increased number of lipid- and apo E–deficient chylomicron particles. These alterations account, in part, for the delay in clearance of these particles.


Sign in / Sign up

Export Citation Format

Share Document