scholarly journals Geminiviral βC1 orchestrates organellar genomic instability to augment viral infection by hijacking host RecA

2021 ◽  
Author(s):  
Padubidri V Shivaprasad ◽  
Ashwin Nair ◽  
C.Y. Harshith ◽  
Anushree N

Chloroplast is the site for transforming light energy to chemical energy. It also acts as a production unit for a variety of defense-related molecules. These defense moieties are necessary to mount a successful counter defence against pathogens including viruses. Geminiviruses disrupt chloroplast homeostasis as a basic strategy for their successful infection inducing vein-clearing, mosaics and chlorosis in infected plants. Here we show that a geminiviral pathogenicity determinant protein βC1 directly interferes with plastid homeostasis. βC1 was capable of inducing organelle-specific nuclease to degrade plastid genome as well as diverted functions of RecA1 protein, a major player in plastid genome maintenance. βC1 interacted with RecA1 in plants and its homolog in bacteria to reduce the ability of host cells to maintain genomic integrity under stresses. Further, reduction in the coding capacity of plastids severely affected retrograde signalling necessary for viral perception and activation of defense. Induction of chloroplast-specific nuclease by βC1 is similar to phosphate starvation-response in which nucleotides are recycled to augment synthesis of new, potentially viral, DNA. These results indicate the presence of a novel strategy in which a viral protein alters host defence by targeting regulators of chloroplast DNA. We predict that the mechanism identified here might have similarities in other plant-pathogen interactions.

2019 ◽  
Author(s):  
Natalia B. Hubbs ◽  
Mareena M. Whisby-Pitts ◽  
Jonathan L. McMurry

AbstractFor successful infection, viruses must recognize their respective host cells. A common mechanism of host recognition by viruses is to utilize a portion of the host cell as a receptor. Bacteriophage Sf6, which infects Shigella flexneri, uses lipopolysaccharide as a primary receptor and then requires interaction with a secondary receptor, a role that can be fulfilled by either outer membrane proteins (Omp) A or C. Our previous work showed that specific residues in the loops of OmpA mediate Sf6 infection. To better understand Sf6 interactions with OmpA loop variants, we determined the kinetics of these interactions through the use of biolayer interferometry, an optical biosensing technique that yields data similar to surface plasmon resonance. Here, we successfully tethered whole Sf6 virions, determined the binding constant of Sf6 to OmpA to be 36 nM. Additionally, we showed that Sf6 bound to five variant OmpAs and the resulting kinetic parameters varied only slightly. Based on these data, we propose a model in which Sf6: Omp receptor recognition is not solely based on kinetics, but likely also on the ability of an Omp to induce a conformational change that results in productive infection.


2006 ◽  
Vol 17 (12) ◽  
pp. 5198-5210 ◽  
Author(s):  
Andreas Schröder ◽  
Barbara Schröder ◽  
Bernhard Roppenser ◽  
Stefan Linder ◽  
Bhanu Sinha ◽  
...  

Staphylococcus aureus fibronectin binding protein-A (FnBPA) stimulates α5β1-integrin signaling and actin rearrangements in host cells. This eventually leads to invasion of the staphylococci and their targeting to lysosomes. Using live cell imaging, we found that FnBPA-expressing staphylococci induce formation of fibrillar adhesion-like attachment sites and translocate together with them on the surface of human endothelial cells (velocity ∼50 μm/h). The translocating bacteria recruited cellular actin and Rab5 in a cyclic and alternating manner, suggesting unsuccessful attempts of phagocytosis by the endothelial cells. Translocation, actin recruitment, and eventual invasion of the staphylococci was regulated by the fibrillar adhesion protein tensin. The staphylococci also regularly produced Neural Wiskott-Aldrich syndrome protein-controlled actin comet tails that further propelled them on the cell surface (velocity up to 1000 μm/h). Thus, S. aureus FnBPA produces attachment sites that promote bacterial movements but subvert actin- and Rab5 reorganization during invasion. This may constitute a novel strategy of S. aureus to postpone invasion until its toxins become effective.


2012 ◽  
Vol 80 (11) ◽  
pp. 3748-3760 ◽  
Author(s):  
Nore Ojogun ◽  
Amandeep Kahlon ◽  
Stephanie A. Ragland ◽  
Matthew J. Troese ◽  
Juliana E. Mastronunzio ◽  
...  

ABSTRACTAnaplasma phagocytophilumis the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis (HGA).A. phagocytophilumbinding to sialyl Lewis x (sLex) and other sialylated glycans that decorate P selectin glycoprotein 1 (PSGL-1) and other glycoproteins is critical for infection of mammalian host cells. Here, we demonstrate the importance ofA. phagocytophilumouter membrane protein A (OmpA) APH_0338 in infection of mammalian host cells. OmpA is transcriptionally induced during transmission feeding ofA. phagocytophilum-infected ticks on mice and is upregulated during invasion of HL-60 cells. OmpA is presented on the pathogen's surface. Sera from HGA patients and experimentally infected mice recognize recombinant OmpA. Pretreatment ofA. phagocytophilumorganisms with OmpA antiserum reduces their abilities to infect HL-60 cells. The OmpA N-terminal region is predicted to contain the protein's extracellular domain. GlutathioneS-transferase (GST)-tagged versions of OmpA and OmpA amino acids 19 to 74 (OmpA19-74) but not OmpA75-205bind to, and competitively inhibitA. phagocytophiluminfection of, host cells. Pretreatment of host cells with sialidase or trypsin reduces or nearly eliminates, respectively, GST-OmpA adhesion. Therefore, OmpA interacts with sialylated glycoproteins. This study identifies the firstA. phagocytophilumadhesin-receptor pair and delineates the region of OmpA that is critical for infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rafael Ayerbe-Algaba ◽  
Nuria Bayó ◽  
Ester Verdú ◽  
Raquel Parra-Millán ◽  
Jesús Seco ◽  
...  

Previously, we identified that a cyclic hexapeptide AOA-2 inhibited the interaction of Gram-negative bacilli (GNB) like Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli to host cells thereby preventing the development of infection in vitro and in a murine sepsis peritoneal model. In this work, we aimed to evaluate in vitro a library of AOA-2 derivatives in order to improve the effect of AOA-2 against GNB infections. Ten AOA-2 derivatives were synthetized for the in vitro assays. Their toxicities to human lung epithelial cells (A549 cells) for 24 h were evaluated by determining the A549 cells viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of these peptide derivatives and AOA-2 at 250, 125, 62.5, and 31.25 μg/mL on the attachment of A. baumannii ATCC 17978, P. aeruginosa PAO1 and E. coli ATCC 25922 strains to A549 cells was characterized by adherence and viability assays. None of the 10 derivatives showed toxicity to A549 cells. RW01 and RW06 have reduced more the adherence of ATCC 17978, PAO1 and ATCC 2599 strains to A549 cells when compared with the original compound AOA-2. Moreover, both peptides have increased slightly the viability of infected A549 cells by PAO1 and ATCC 25922 than those observed with AOA-2. Finally, RW01 and RW06 have potentiated the activity of colistin against ATCC 17978 strain in the same level with AOA-2. The optimization program of AOA-2 has generated two derivatives (RW01 and RW06) with best effect against interaction of GNB with host cells, specifically against P. aeruginosa and E. coli.


2019 ◽  
Vol 85 (8) ◽  
Author(s):  
Irene L. G. Newton ◽  
Barton E. Slatko

ABSTRACT Wolbachia pipientis is an alphaproteobacterial obligate intracellular microbe and arguably the most successful infection on our planet, colonizing 40% to 60% of insect species. Wolbachia spp. are also present in most, but not all, filarial nematodes, where they are obligate mutualists and are the targets for antifilarial drug discovery. Although Wolbachia spp. are related to important human pathogens, they do not infect mammals but instead are well known for their reproductive manipulations of insect populations, inducing the following phenotypes: male killing, feminization, parthenogenesis induction, and cytoplasmic incompatibility (CI). The most common of these, CI, results in a sperm-egg incompatibility and increases the relative fecundity of infected females in a population. In the last decade, Wolbachia spp. have also been shown to provide a benefit to insects, where the infection can inhibit RNA virus replication within the host. Wolbachia spp. cannot be cultivated outside host cells, and no genetic tools are available in the symbiont, limiting approaches available for their study. This means that many questions fundamental to our understanding of Wolbachia basic biology remained unknown for decades. The 10th biennial international Wolbachia conference, Wolbachia Evolution, Ecology, Genomics and Cell Biology: A Chronicle of the Most Ubiquitous Symbiont, was held on 17 to 22 June 2018 in Salem, MA. In this review, we highlight the new science presented at the meeting, link it to prior efforts to answer these questions across the Wolbachia genus, and present the importance of these findings to the field of symbiosis. The topics covered in this review are based on the presentations at the conference.


2005 ◽  
Vol 73 (7) ◽  
pp. 3860-3868 ◽  
Author(s):  
Dawn R. Clifton ◽  
Cheryl A. Dooley ◽  
Scott S. Grieshaber ◽  
Reynaldo A. Carabeo ◽  
Kenneth A. Fields ◽  
...  

ABSTRACT Chlamydiae are obligate intracellular pathogens that efficiently induce their endocytosis by susceptible eukaryotic host cells. Recently, a Chlamydia trachomatis type III secreted effector protein, Tarp, was found to be translocated and tyrosine phosphorylated at the site of entry and associated with the recruitment of actin that coincides with endocytosis. C. trachomatis Tarp possesses up to six direct repeats of approximately 50 amino acids each. The majority of the tyrosine residues are found within this repeat region. Here we have ectopically expressed distinct domains of Tarp in HeLa 229 cells and demonstrated that tyrosine phosphorylation occurs primarily within the repeat region, while recruitment of actin is mediated by the C-terminal domain of the protein. A comparison of other sequenced chlamydial genomes revealed that each contains an ortholog of Tarp, although Chlamydia muridarum, Chlamydophila caviae, and Chlamydophila pneumoniae Tarp lack the large repeat region. Immunofluorescence and immunoblotting using an antiphosphotyrosine antibody show no evidence of phosphotyrosine at the site of entry of C. muridarum, C. caviae, and C. pneumoniae, although each species similarly recruits actin. Ectopic expression of full-length C. trachomatis and C. caviae Tarp confirmed that both recruit actin but only C. trachomatis Tarp is tyrosine phosphorylated. The data indicate that the C-terminal domain of Tarp is essential for actin recruitment and that tyrosine phosphorylation may not be an absolute requirement for actin recruitment. The results further suggest the potential for additional, unknown signal transduction pathways associated specifically with C. trachomatis.


2014 ◽  
Vol 80 (16) ◽  
pp. 4898-4910 ◽  
Author(s):  
Damian H. Gilling ◽  
Masaaki Kitajima ◽  
Jason R. Torrey ◽  
Kelly R. Bright

ABSTRACTNumerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses.


Author(s):  
Richa Mishra ◽  
Pandikannan Krishnamoorthy ◽  
Himanshu Kumar

Host innate immunity is the major player against continuous microbial infection. Various pathogenic bacteria adopt the strategies to evade the immunity and show resistance toward the various established therapies. Despite the advent of many antibiotics for bacterial infections, there is a substantial need for the host-directed therapies (HDTs) to combat the infection. HDTs are recently being adopted to be useful in eradicating intracellular bacterial infection. Changing the innate immune responses of the host cells alters pathogen’s ability to reside inside the cell. MicroRNAs are the small non-coding endogenous molecules and post-transcriptional regulators to target the 3’UTR of the messenger RNA. They are reported to modulate the host’s immune responses during bacterial infections. Exploiting microRNAs as a therapeutic candidate in HDTs upon bacterial infection is still in its infancy. Here, initially, we re-analyzed the publicly available transcriptomic dataset of macrophages, infected with different pathogenic bacteria and identified significant genes and microRNAs common to the differential infections. We thus identified and miR-30e-5p, to be upregulated in different bacterial infections which enhances innate immunity to combat bacterial replication by targeting key negative regulators such as SOCS1 and SOCS3 of innate immune signaling pathways. Therefore, we propose miR-30e-5p as one of the potential candidates to be considered for additional clinical validation toward HDTs.


2021 ◽  
Author(s):  
Michael A. Caligiuri ◽  
Jianhua Yu ◽  
Yaping Sun ◽  
Wenjuan Dong ◽  
Lei Tian ◽  
...  

The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Cancer patients are usually immunocompromised and thus are particularly susceptible to SARS-CoV-2 infection resulting in COVID-19. Although many vaccines against COVID-19 are being preclinically or clinically tested or approved, none have yet been specifically developed for cancer patients or reported as having potential dual functions to prevent COVID-19 and treat cancer. Here, we confirmed that COVID-19 patients with cancer have low levels of antibodies against the spike (S) protein, a viral surface protein mediating the entry of SARS-CoV-2 into host cells, compared with COVID-19 patients without cancer. We developed an oncolytic herpes simplex virus-1 vector-based vaccine named oncolytic virus (OV)-spike. OV-spike induced abundant anti-S protein neutralization antibodies in both tumor-free and tumor-bearing mice, which inhibit infection of VSV-SARS-CoV-2 and wild-type (WT) live SARS-CoV-2 as well as the B.1.1.7 variant in vitro. In the tumor-bearing mice, OV-spike also inhibited tumor growth, leading to better survival in multiple preclinical tumor models than the untreated control. Furthermore, OV-spike induced anti-tumor immune response and SARS-CoV-2-specific T cell response without causing serious adverse events. Thus, OV-spike is a promising vaccine candidate for both preventing COVID-19 and enhancing the anti-tumor response.


2020 ◽  
Author(s):  
Himadri Nath ◽  
Keya Basu ◽  
Abhishek De ◽  
Subhajit Biswas

AbstractDengue is the most important arboviral disease inflicting mankind. This mosquito-borne Flavivirus causes mild to severe dengue fever which in some cases leads to life-threatening conditions namely, dengue haemorrhagic fever and dengue shock syndrome. Annual infection is estimated at 390 million globally with 96 million manifesting clinically. So, ≥80% infections are asymptomatic and self-limiting. Dengue virus (DV) non-structural protein 1 (NS1) is a proven virotoxin abundantly present in the victim’s blood. We found that DV-infected or only NS1-expressing cells both can induce Cleaved Caspase3, due to antiviral response of host cells. NS1-transfected cells also showed nuclear damage and significant levels of DNA breaks suggestive of ensuing apoptosis. So, it was established that NS1 alone is capable of causing apoptosis. Surprisingly, despite secreting similar amount of soluble NS1, the DV-infected cells showed intact nuclear morphology and background levels of DNA nicks. These observations suggested that DV downregulates apoptosis of infected cells, which is a viral strategy against host defence. Furthermore, DV-infected cells counteracted Camptothecin-induced apoptotic DNA break. DV-infection was also found to keep the infected cells metabolically more active than only NS1 expressing cells. So, DV bypasses cellular defence against virus i.e. apoptosis by counteracting cellular DNA break and keeps the infected cells metabolically active to support virus replication for longer period which eventually results in high virus titer in circulation. Our findings reveal another level of intricacy involving dengue virus-host interactions and perhaps explain why ≥80% DV infections are asymptomatic/self-limiting despite the presence of NS1 virotoxin in infected cells.Author SummaryNS1, a virotoxin, abundantly present in Dengue patients blood, is a major player behind disease patho-biogenesis including plasma leakage. Despite the presence of NS1 in blood, Dengue is asymptomatic and self-limiting in more than 80% dengue virus (DV) infected people. We investigated this observation and found that plasmid-mediated NS1 expression and secretion in cells are sufficient to cause programmed cell death (apoptosis) and associated cellular DNA breakage. However, cells infected with dengue virus and secreting equivalent amounts of NS1 didn’t exhibit apoptotic DNA breakage. Consequently, DV-infected cells showed better survival than cells in which only NS1 was transiently expressed by transfection with expression plasmid. We also found that DV can even prevent chemical induced apoptotic DNA damage in infected host cells. So, DV bypasses host antiviral defence i.e. apoptosis by counteracting cellular DNA breakages and keeps the infected cells metabolically active to prolong virus replication.


Sign in / Sign up

Export Citation Format

Share Document