scholarly journals The copper resistome of group B Streptococcus reveals insight into the genetic basis of cellular survival during metal ion stress

2021 ◽  
Author(s):  
Kelvin GK Goh ◽  
Matthew J Sullivan ◽  
Glen C Ulett

In bacteria, copper (Cu) can support metabolic processes as an enzymatic cofactor but can also cause cell damage if present in excess, leading to intoxication. In group B Streptococcus (GBS) a system for control of Cu efflux based on the canonical cop operon supports survival during Cu stress. In some other bacteria, genetic systems additional to the cop operon are engaged during Cu stress and also contribute to Cu management. Here, we examined genetic systems beyond the cop operon in GBS for regions that contribute to survival of GBS in Cu stress using a forward genetic screen and probe of the entire bacterial genome. A high-density mutant library, generated using pGh9-ISS1, was used to expose GBS to Cu stress and compared to non-exposed controls en masse. Nine genes were identified as essential for GBS survival in Cu stress, whereas five genes constrained GBS growth in Cu stress. The genes encode varied factors including enzymes for metabolism, cell wall synthesis, transporters and global transcriptional regulators. Targeted mutation of the genes validated their roles in GBS resistance to Cu stress. Notably, several genes, including stp1, yceG, plyB and rfaB were also essential for resistance to Zn stress. Excepting copA, the genes identified are new to the area of bacterial metal ion intoxication. We conclude that a discrete and limited suite of genes beyond the cop operon in GBS contribute to a repertoire of mechanisms used to survive Cu stress in vitro and achieve cellular homeostasis.

PEDIATRICS ◽  
1978 ◽  
Vol 62 (4) ◽  
pp. 620-621
Author(s):  
Gerald W. Fischer ◽  
James W. Bass ◽  
George H. Lowell ◽  
Martin H. Crumrine

The article by Bortolussi et al. on pneumococcal septicemia and meningitis in the neonat (Pediatrics 60:352, September 1977) was of great interest to us, since we have been analyzing the effect of antibody directed against Streptococcus pneumoniae on group B Streptococcus type III. We have recently shown (unpublished data) that antibody directed against S. pneumoniae type 14 precipitates the hot hydrochloric acid-extracted polysaccharide antigen of group B Streptococcus type III. Further studies have shown that this antibody is opsonic for group B Streptococcus type III in an in vitro bactericidal assay and protective in a suckling rat model of group B Streptococcus type III sepsis.1


PEDIATRICS ◽  
1990 ◽  
Vol 86 (6) ◽  
pp. 955-962
Author(s):  
Laurence B. Givner

Currently available human immunoglobulin preparations for intravenous use (IVIGs) are being used (with antibiotics) by some physicians for therapy of sepsis in newborns. Most neonatal sepsis and/or meningitis in this country is caused by group B Streptococcus (GBS), and most of these cases are due to type III GBS (III-GBS). The killing of III-GBS in vitro is dependent on specific IgG antibody. Adequate serum levels of specific III-GBS antibody protect the exposed newborn from the development of invasive disease. Therefore, III-GBS was used as a model to evaluate the activity of three IVIG preparations available for clinical use. Specific antibody levels, in vitro opsonophagocytic killing, and protective efficacy in animal models revealed differences in activity for III-GBS between the three IVIG preparations as well as between IVIG lots from the same manufacturer. Furthermore, it was found that the effect of IVIG using one of the assay methods may not reliably predict activity obtained using the other assays. These data document the inability to predict functional activity against a specific pathogen such as GBS on the part of a lot of IVIG chosen at random. In view of these findings and of the limited data evaluating clinical efficacy, IVIG cannot be recommended at this time for use in the therapy of infectious diseases such as neonatal sepsis.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Lindsey R. Burcham ◽  
Yoann Le Breton ◽  
Jana N. Radin ◽  
Brady L. Spencer ◽  
Liwen Deng ◽  
...  

ABSTRACT Nutritional immunity is an elegant host mechanism used to starve invading pathogens of necessary nutrient metals. Calprotectin, a metal-binding protein, is produced abundantly by neutrophils and is found in high concentrations within inflammatory sites during infection. Group B Streptococcus (GBS) colonizes the gastrointestinal and female reproductive tracts and is commonly associated with severe invasive infections in newborns such as pneumonia, sepsis, and meningitis. Although GBS infections induce robust neutrophil recruitment and inflammation, the dynamics of GBS and calprotectin interactions remain unknown. Here, we demonstrate that disease and colonizing isolate strains exhibit susceptibility to metal starvation by calprotectin. We constructed a mariner transposon (Krmit) mutant library in GBS and identified 258 genes that contribute to surviving calprotectin stress. Nearly 20% of all underrepresented mutants following treatment with calprotectin are predicted metal transporters, including known zinc systems. As calprotectin binds zinc with picomolar affinity, we investigated the contribution of GBS zinc uptake to overcoming calprotectin-imposed starvation. Quantitative reverse transcriptase PCR (qRT-PCR) revealed a significant upregulation of genes encoding zinc-binding proteins, adcA, adcAII, and lmb, following calprotectin exposure, while growth in calprotectin revealed a significant defect for a global zinc acquisition mutant (ΔadcAΔadcAIIΔlmb) compared to growth of the GBS wild-type (WT) strain. Furthermore, mice challenged with the ΔadcAΔadcAIIΔlmb mutant exhibited decreased mortality and significantly reduced bacterial burden in the brain compared to mice infected with WT GBS; this difference was abrogated in calprotectin knockout mice. Collectively, these data suggest that GBS zinc transport machinery is important for combatting zinc chelation by calprotectin and establishing invasive disease. IMPORTANCE Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract but is a common causative agent of meningitis. GBS meningitis is characterized by extensive infiltration of neutrophils carrying high concentrations of calprotectin, a metal chelator. To persist within inflammatory sites and cause invasive disease, GBS must circumvent host starvation attempts. Here, we identified global requirements for GBS survival during calprotectin challenge, including known and putative systems involved in metal ion transport. We characterized the role of zinc import in tolerating calprotectin stress in vitro and in a mouse model of infection. We observed that a global zinc uptake mutant was less virulent than the parental GBS strain and found calprotectin knockout mice to be equally susceptible to infection by wild-type (WT) and mutant strains. These findings suggest that calprotectin production at the site of infection results in a zinc-limited environment and reveals the importance of GBS metal homeostasis to invasive disease.


2019 ◽  
Vol 136 ◽  
pp. 103692 ◽  
Author(s):  
Giacomo Marziali ◽  
Claudio Foschi ◽  
Carola Parolin ◽  
Beatrice Vitali ◽  
Antonella Marangoni

2007 ◽  
Vol 282 (38) ◽  
pp. 27562-27571 ◽  
Author(s):  
Amanda L. Lewis ◽  
Hongzhi Cao ◽  
Silpa K. Patel ◽  
Sandra Diaz ◽  
Wesley Ryan ◽  
...  

Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2) was enhanced by CTP and Mg2+, the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac2 followed by CMP activation of Neu5Ac or activation of Neu5,9Ac2 followed by de-O-acetylation of CMP-Neu5,9Ac2. Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.


2007 ◽  
Vol 75 (3) ◽  
pp. 1473-1483 ◽  
Author(s):  
Atul K. Johri ◽  
Immaculada Margarit ◽  
Mark Broenstrup ◽  
Cecilia Brettoni ◽  
Lei Hua ◽  
...  

ABSTRACT Group B Streptococcus (GBS) is an opportunistic organism that can harmlessly colonize the human gut, vagina, and rectum but can also cause pneumonia, sepsis, and meningitis in neonates born to colonized mothers. We have shown previously that growth rate and oxygen level regulate the ability of GBS to invade eukaryotic cells in vitro. Herein we extend and expand on these observations to show that GBS type V, an emergent serotype, grown in a chemostat at a cell mass-doubling time (td ) of 1.8 h with oxygen invaded human ME-180 cervical epithelial cells in large numbers compared with those grown at the same td without oxygen or at a slower td of 11.0 h. The fact that several GBS type V cell wall-associated and membrane proteins were expressed exclusively under the invasive growth condition prompted an investigation, using genomics and proteomics, of all upregulated genes and proteins. Several proteins with potential roles in adherence were identified, including an undefined surface antigen (SAG1350), a lipoprotein (SAG0971), penicillin-binding protein 2b (SAG0765), glyceraldehyde-3-phosphate dehydrogenase (SAG0823), and an iron-binding protein (SAG1007). Mouse antisera to these five proteins inhibited binding of GBS type V to ME-180 cells by ≥85%. Recombinant undefined surface antigen (SAG1350), lipoprotein (SAG0971), and penicillin-binding protein 2b (SAG0765) each bound to ME-180 cells in a dose-dependent fashion, confirming their ability to act as ligands. Collectively, these data increase the number of potential GBS adherence factors and also suggest a role for these surface-associated proteins in initial pathogenic events.


2003 ◽  
Vol 71 (12) ◽  
pp. 6707-6711 ◽  
Author(s):  
Atul K. Johri ◽  
Joahnna Padilla ◽  
Gennady Malin ◽  
Lawrence C. Paoletti

ABSTRACT The facultative anaerobe group B Streptococcus (GBS) is an opportunistic pathogen of pregnant women, newborns, and the elderly. Although several virulence factors have been identified, environmental factors that regulate the pathogenicity of GBS have not been well characterized. Using the dynamic in vitro attachment and invasion system (DIVAS), we examined the effect of oxygen on the ability of GBS to invade immortalized human epithelial cells. GBS type III strain M781 invaded human epithelial cells of primitive neurons, the cervix, the vagina, and the endometrium in 5- to 400-fold higher numbers when cultured at a cell mass doubling time (td ) of 1.8 h than at a slower td of 11 h. Invasion was optimal when GBS was cultured at a td of 1.8 h in the presence of ≥5% oxygen and was significantly reduced without oxygen. Moreover, GBS grown in a chemostat under highly invasive conditions (td of 1.8 h, with oxygen) was more virulent in neonatal mice than was GBS grown under suboptimal invasion conditions (td of 1.8 h, without oxygen), suggesting a positive association between in vitro invasiveness with DIVAS and virulence.


2008 ◽  
Vol 190 (6) ◽  
pp. 1956-1965 ◽  
Author(s):  
Sheng-Mei Jiang ◽  
Nadeeza Ishmael ◽  
Julie Dunning Hotopp ◽  
Manuela Puliti ◽  
Luciana Tissi ◽  
...  

ABSTRACT CsrRS (or CovRS) is a two-component regulatory system that controls expression of multiple virulence factors in the important human pathogen group B Streptococcus (GBS). We now report global gene expression studies in GBS strains 2603V/R and 515 and their isogenic csrR and csrS mutants. Together with data reported previously for strain NEM316, the results reveal a conserved 39-gene CsrRS regulon. In vitro phosphorylation-dependent binding of recombinant CsrR to promoter regions of both positively and negatively regulated genes suggests that direct binding of CsrR can mediate activation as well as repression of target gene expression. Distinct patterns of gene regulation in csrR versus csrS mutants in strain 2603V/R compared to 515 were associated with different hierarchies of relative virulence of wild-type, csrR, and csrS mutants in murine models of systemic infection and septic arthritis. We conclude that CsrRS regulates a core group of genes including important virulence factors in diverse strains of GBS but also displays marked variability in the repertoire of regulated genes and in the relative effects of CsrS signaling on CsrR-mediated gene regulation. Such variation is likely to play an important role in strain-specific adaptation of GBS to particular host environments and pathogenic potential in susceptible hosts.


Sign in / Sign up

Export Citation Format

Share Document