selenoprotein k
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 2)

Redox Biology ◽  
2021 ◽  
pp. 102154
Author(s):  
Shi-Zheng Jia ◽  
Xin-Wen Xu ◽  
Zhong-Hao Zhang ◽  
Chen Chen ◽  
Yu-Bin Chen ◽  
...  

2021 ◽  
Author(s):  
Rujin Cheng ◽  
Jun Liu ◽  
Martin Forstner ◽  
George Woodward ◽  
Elmer Heppard ◽  
...  

Through known association with other proteins, human selenoprotein K (selenok) is currently implicated in the palmitoylation of proteins, degradation of misfolded proteins, innate immune response, and the life cycle of SARS-CoV-2 virus. However, neither the catalytic function of selenok's selenocysteine (Sec), which, curiously, resides in an intrinsically disordered protein segment nor selenok's specific role in these pathways are known to date. This report casts these questions in a new light as it describes that selenok is able -both in vitro and in vivo- to cleave some of its own peptide bonds. The cleavages not only release selenok segments that contain its reactive Sec, but as the specific cleavage sites were identified, they proved to cluster tightly near sites through which selenok interacts with protein partners. Furthermore, it is shown that selenok's cleavage activity is neither restricted to itself nor promiscuous but selectively extends to at least one of its protein partners. Together, selenok's cleavage ability and its features have all hallmarks of a regulatory mechanism that could play a central role in selenok's associations with other proteins and its cellular functions overall.


2020 ◽  
Vol 133 (22) ◽  
pp. jcs251819
Author(s):  
Christine Salaun ◽  
Carolina Locatelli ◽  
Filip Zmuda ◽  
Juan Cabrera González ◽  
Luke H. Chamberlain

ABSTRACTAlmost two decades have passed since seminal work in Saccharomyces cerevisiae identified zinc finger DHHC domain-containing (zDHHC) enzymes as S-acyltransferases. These enzymes are ubiquitous in the eukarya domain, with 23 distinct zDHHC-encoding genes in the human genome. zDHHC enzymes mediate the bulk of S-acylation (also known as palmitoylation) reactions in cells, transferring acyl chains to cysteine thiolates, and in so-doing affecting the stability, localisation and function of several thousand proteins. Studies using purified components have shown that the minimal requirements for S-acylation are an appropriate zDHHC enzyme–substrate pair and fatty acyl-CoA. However, additional proteins including GCP16 (also known as Golga7), Golga7b, huntingtin and selenoprotein K, have been suggested to regulate the activity, stability and trafficking of certain zDHHC enzymes. In this Review, we discuss the role of these accessory proteins as essential components of the cellular S-acylation system.


2020 ◽  
Vol 11 (2) ◽  
pp. 186-199
Author(s):  
N. V. Stanishevska

The functional activity of selenoproteins has a wide range of effects on complex pathogenetic processes, including teratogenesis, immuno-inflammatory, neurodegenerative. Being active participants and promoters of many signaling pathways, selenoproteins support the lively interest of a wide scientific community. This review is devoted to the analysis of recent data describing the participation of selenoproteins in various molecular interactions mediating important signaling pathways. Data processing was carried out by the method of complex analysis. For convenience, all selenoproteins were divided into groups depending on their location and function. Among the group of selenoproteins of the ER membrane, selenoprotein N affects the absorption of Ca2+ by the endoplasmic reticulum mediated by oxidoreductin (ERO1), a key player in the CHOP/ERO1 branch, a pathogenic mechanism that causes myopathy. Another selenoprotein of the ER membrane selenoprotein K binding to the DHHC6 protein affects the IP3R receptor that regulates Ca2+ flux. Selenoprotein K is able to affect another protein of the endoplasmic reticulum CHERP, also appearing in Ca2+ transport. Selenoprotein S, associated with the lumen of ER, is able to influence the VCP protein, which ensures the incorporation of selenoprotein K into the ER membrane. Selenoprotein M, as an ER lumen protein, affects the phosphorylation of STAT3 by leptin, which confirms that Sel M is a positive regulator of leptin signaling. Selenoprotein S also related to luminal selenoproteins ER is a modulator of the IRE1α-sXBP1 signaling pathway. Nuclear selenoprotein H will directly affect the suppressor of malignant tumours, p53 protein, the activation of which increases with Sel H deficiency. The same selenoprotein is involved in redox regulation. Among the cytoplasmic selenoproteins, abundant investigations are devoted to SelP, which affects the PI3K/Akt/Erk signaling pathway during ischemia/reperfusion, is transported into the myoblasts through the plasmalemma after binding to the apoER2 receptor, and into the neurons to the megaline receptor and in general, selenoprotein P plays the role of a pool that stores the necessary trace element and releases it, if necessary, for vital selenoproteins. The thioredoxin reductase family plays a key role in the invasion and metastasis of salivary adenoid cystic carcinoma through the influence on the TGF-β-Akt/GSK-3β pathway during epithelial-mesenchymal transition. The deletion of thioredoxin reductase 1 affects the levels of messengers of the Wnt/β-catenin signaling pathway. No less studied is the glutathione peroxidase group, of which GPX3 is able to inhibit signaling in the Wnt/β-catenin pathway and thereby inhibit thyroid metastasis, as well as suppress protein levels in the PI3K/Akt/c-fos pathway. A key observation is that in cases of carcinogenesis, a decrease in GPX3 and its hypermethylation are almost always found. Among deiodinases, deiodinase 3 acts as a promoter of the oncogenes BRAF, MEK or p38, while stimulating a decrease in the expression of cyclin D1. The dependence of the level of deiodinase 3 on the Hedgehog (SHH) signaling pathway is also noted. Methionine sulfoxide reductase A can compete for the uptake of ubiquitin, reduce p38, JNK and ERK promoters of the MAPK signaling pathway; methionine sulfoxide reductase B1 suppresses MAPK signaling messengers, and also increases PARP and caspase 3.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1122 ◽  
Author(s):  
Zhuang Lu ◽  
Pengzu Wang ◽  
Teng Teng ◽  
Baoming Shi ◽  
Anshan Shan ◽  
...  

To evaluate the effects of dietary Se deficiency and excess on the mRNA levels of selenoproteins in pig spleen tissues, 20 healthy uncastrated boars (Duroc × Landrace × Yorkshire, 10 ± 0.72 kg) were randomly divided into four groups (5 pigs per group). The pigs were fed a Se deficient corn-soybean basal feed (Se content <0.03 mg/kg) or basal feed with added sodium selenite at 0.3, 1.0, or 3.0 mg Se/kg diet, respectively. The experiment lasted 16 weeks. The spleen tissue was collected to examine the mRNA expression levels of 24 selenoprotein genes at the end of the study. Compared with pigs in other groups, those fed with the 1.0 mg Se/kg diet had higher mRNA levels of glutathione peroxidase 1 (Gpx1), glutathione peroxidase 2 (Gpx2), deiodinase type II (Dio2), thioredoxin reductase 3 (Txnrd3), selenoprotein H (Selh), selenoprotein N, 1 (Sepn1), selenoprotein P1 (Sepp1), and selenoprotein V (Selv) in the spleen (p < 0.05). Dietary Se deficiency resulted in lower mRNA levels of Gpx1, Gpx2, glutathione peroxidase 3 (Gpx3), Dio2, thioredoxin reductase 2 (Txnrd2), Txnrd3, Selh, selenoprotein I (Seli), selenoprotein K (Selk), selenoprotein M (Selm), Sepn1, Sepp1, and Selv in the spleen than the other three groups. Dietary Se levels did not affect the mRNA levels of glutathione peroxidase 4 (Gpx4), deiodinase type I (Dio1), deiodinase type III (Dio3), selenophosphate synthetase 2 (Sephs2), thioredoxin reductase 1 (Txnrd1), selenoprotein O (Selo), selenoprotein S (Sels), selenoprotein W (Selw), selenoprotein X (Selx), and selenoprotein 15 (Sel15) in the spleen (p > 0.05). Dietary Se levels can affect the transcription levels of 14 selenoprotein genes in the spleen of pigs.


2019 ◽  
Vol 192 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Michael P. Marciel ◽  
Peter R. Hoffmann

2018 ◽  
Vol 26 (6) ◽  
pp. 1007-1023 ◽  
Author(s):  
Jea Hwang Lee ◽  
Jun Ki Jang ◽  
Kwan Young Ko ◽  
Yunjung Jin ◽  
Minju Ham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document