scholarly journals The Characteristics of Seismic Rotations in VTI Medium

2021 ◽  
Vol 11 (22) ◽  
pp. 10845
Author(s):  
Lixia Sun ◽  
Yun Wang ◽  
Wei Li ◽  
Yongxiang Wei

Under the assumptions of linear elasticity and small deformation in traditional elastodynamics, the anisotropy of the medium has a significant effect on rotations observed during earthquakes. Based on the basic theory of the first-order velocity-stress elastic wave equation, this paper simulates the seismic wave propagation of the translational and rotational motions in two-dimensional isotropic and VTI (transverse isotropic media with a vertical axis of symmetry) media under different source mechanisms with the staggered-grid finite-difference method with respect to nine different seismological models. Through comparing the similarities and differences between the translational and rotational components of the wave fields, this paper focuses on the influence of anisotropic parameters on the amplitude and phase characteristics of the rotations. We verify that the energy of S waves in the rotational components is significantly stronger than that of P waves, and the response of rotations to the anisotropic parameters is more sensitive. There is more abundant information in the high-frequency band of the rotational components. With the increase of Thomsen anisotropic parameters ε and δ, the energy of the rotations increases gradually, which means that the rotational component observation may be helpful to the study of anisotropic parameters.

Geophysics ◽  
1990 ◽  
Vol 55 (11) ◽  
pp. 1429-1434 ◽  
Author(s):  
N. F. Uren ◽  
G. H. F. Gardner ◽  
J. A. McDonald

The migrator’s equation, which gives the relationship between real and apparent dips on a reflector in zero‐offset reflection seismic sections, may be readily implemented in one step with a frequency‐domain migration algorithm for homogeneous media. Huygens’ principle is used to derive a similar relationship for anisotropic media where velocities are directionally dependent. The anisotropic form of the migrator’s equation is applicable to both elliptically and nonelliptically anisotropic media. Transversely isotropic media are used to demonstrate the performance of an f-k implementation of the migrator’s equation for anisotropic media. In such a medium SH-waves are elliptically anisotropic, while P-waves are nonelliptically anisotropic. Numerical model data and physical model data demonstrate the performance of the algorithm, in each case recovering the original structure. Isotropic and anisotropic migration of anisotropic physical model data are compared experimentally, where the anisotropic velocity function of the medium has a vertical axis of symmetry. Only when anisotropic migration is used is the original structure recovered.


Geophysics ◽  
1982 ◽  
Vol 47 (5) ◽  
pp. 771-783 ◽  
Author(s):  
J. E. White

Radiation of elastic waves from a point force or from a localized torque into a transversely isotropic medium has been formulated in terms of displacement potentials, and transient waveforms have been computed by numerical Fourier inversion. For isotropic sandstone, this procedure yields P‐ and S‐wave pulses whose arrival times and magnitudes agree with theory. For a range of anisotropic rocks, arrival times of quasi‐P‐waves and quasi‐S‐waves agree with asymptotic theory. For extreme anisotropy, some quasi‐S‐wave pulses arrive at times which are not predicted by asymptotic theory. Magnitudes have not been compared with results of asymptotic theory, but decrease with distance appears to be in agreement. This Fourier inversion method gives near‐source changes in waveform which are not obtainable from the asymptotic theory.


Author(s):  
E. Kozlovskyy ◽  
D. Malytskyy ◽  
A. Pavlova

The aim of this paper is to clarify the velocity model of the Transcarpathian seismic region. The model will further be implemented in neural-network modelling to calculate and verify the depth and distribution of earthquake foci. There has been carried out an analysis of seismic wave propagation in different directions across the Transcarpathian seismic region. Being an important parameter indicative of the direction of wave propagation in a natural medium, the azimuthal coefficient q³ has proved to be efficient in developing a training neural network set. Two methods of selecting sectors have been shown, based either on the location of a seismic station or a seismic event area. We have calculated average values of the azimuthal coefficient q³ for sectors with close values of q³ for one-, two- and three-layered media according to the depth of earthquake foci in each of the three layers. With three-layered media covering earthquake foci depths of 8,000-9,000 m, the calculations accurately reflect local seismic events in the Carpathians. An average layer thickness h and an average layer velocity v were calculated separately for each E-S pair (epicenter - seismic station). Conventional combining of layers was used as a method of calculating the third layer azimuth coefficient q³. The calculations were made for direct P-waves (similar calculations can be made for S-waves). We have suggested an interpretation of the obtained results and their practical implications. It has been demonstrated how the azimuthal coefficient can be used in analysing the parameters of media.


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 308-319 ◽  
Author(s):  
Ivan Pšenčík ◽  
Joe A. Dellinger

In inhomogeneous isotropic regions, S-waves can be modeled using the ray method for isotropic media. In inhomogeneous strongly anisotropic regions, the independently propagating qS1- and qS2-waves can similarly be modeled using the ray method for anisotropic media. The latter method does not work properly in inhomogenous weakly anisotropic regions, however, where the split qS-waves couple. The zeroth‐order approximation of the quasi‐isotropic (QI) approach was designed for just such inhomogeneous weakly anisotropic media, for which neither the ray method for isotropic nor anisotropic media applies. We test the ranges of validity of these three methods using two simple synthetic models. Our results show that the QI approach more than spans the gap between the ray methods: it can be used in isotropic regions (where it reduces to the ray method for isotropic media), in regions of weak anisotropy (where the ray method for anisotropic media does not work properly), and even in regions of moderately strong anisotropy (in which the qS-waves decouple and thus could be modeled using the ray method for anisotropic media). A modeling program that switches between these three methods as necessary should be valid for arbitrary‐strength anisotropy.


Geophysics ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. T155-T164
Author(s):  
Wanting Hou ◽  
Li-Yun Fu ◽  
José M. Carcione ◽  
Zhiwei Wang ◽  
Jia Wei

Thermoelasticity is important in seismic propagation due to the effects related to wave attenuation and velocity dispersion. We have applied a novel finite-difference (FD) solver of the Lord-Shulman thermoelasticity equations to compute synthetic seismograms that include the effects of the thermal properties (expansion coefficient, thermal conductivity, and specific heat) compared with the classic forward-modeling codes. We use a time splitting method because the presence of a slow quasistatic mode (the thermal mode) makes the differential equations stiff and unstable for explicit time-stepping methods. The spatial derivatives are computed with a rotated staggered-grid FD method, and an unsplit convolutional perfectly matched layer is used to absorb the waves at the boundaries, with an optimal performance at the grazing incidence. The stability condition of the modeling algorithm is examined. The numerical experiments illustrate the effects of the thermoelasticity properties on the attenuation of the fast P-wave (or E-wave) and the slow thermal P-wave (or T-wave). These propagation modes have characteristics similar to the fast and slow P-waves of poroelasticity, respectively. The thermal expansion coefficient has a significant effect on the velocity dispersion and attenuation of the elastic waves, and the thermal conductivity affects the relaxation time of the thermal diffusion process, with the T mode becoming wave-like at high thermal conductivities and high frequencies.


1969 ◽  
Vol 59 (1) ◽  
pp. 59-72
Author(s):  
Robert S. Crosson ◽  
Nikolas I. Christensen

Abstract Several recent investigations suggest that portions of the Earth's upper mantle behave anisotropically to seismic wave propagation. Since several types of anisotropy can produce azimuthal variations in Pn velocities, it is of particular geophysical interest to provide a framework for the recognition of the form or forms of anisotropy most likely to be manifest in the upper mantle. In this paper upper mantle material is assumed to possess the elastic properties of transversely isotropic media. Equations are presented which relate azimuthal variations in Pn velocities to the direction and angle of tilt of the symmetry axis of a transversely isotropic upper mantle. It is shown that the velocity data of Raitt and Shor taken near the Mendocino and Molokai fracture zones can be adequately explained by the assumption of transverse isotropy with a nearly horizontal symmetry axis.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D283-D291 ◽  
Author(s):  
Peng Liu ◽  
Wenxiao Qiao ◽  
Xiaohua Che ◽  
Xiaodong Ju ◽  
Junqiang Lu ◽  
...  

We have developed a new 3D acoustic logging tool (3DAC). To examine the azimuthal resolution of 3DAC, we have evaluated a 3D finite-difference time-domain model to simulate a case in which the borehole penetrated a rock formation boundary when the tool worked at the azimuthal-transmitting-azimuthal-receiving mode. The results indicated that there were two types of P-waves with different slowness in waveforms: the P-wave of the harder rock (P1) and the P-wave of the softer rock (P2). The P1-wave can be observed in each azimuthal receiver, but the P2-wave appears only in the azimuthal receivers toward the softer rock. When these two types of rock are both fast formations, two types of S-waves also exist, and they have better azimuthal sensitivity compared with P-waves. The S-wave of the harder rock (S1) appears only in receivers toward the harder rock, and the S-wave of the softer rock (S2) appears only in receivers toward the softer rock. A model was simulated in which the boundary between shale and sand penetrated the borehole but not the borehole axis. The P-wave of shale and the S-wave of sand are azimuthally sensitive to the azimuth angle variation of two formations. In addition, waveforms obtained from 3DAC working at the monopole-transmitting-azimuthal-receiving mode indicate that the corresponding P-waves and S-waves are azimuthally sensitive, too. Finally, we have developed a field example of 3DAC to support our simulation results: The azimuthal variation of the P-wave slowness was observed and can thus be used to reflect the azimuthal heterogeneity of formations.


Sign in / Sign up

Export Citation Format

Share Document