local relief
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 17)

H-INDEX

12
(FIVE YEARS 1)

Geomatics ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 450-463
Author(s):  
Jean-Pierre TOUMAZET ◽  
François-Xavier SIMON ◽  
Alfredo MAYORAL

The use of Light Detection and Ranging (LiDAR) is becoming more and more common in different landscape exploration domains such as archaeology or geomorphology. In order to allow the detection of features of interest, visualization filters have to be applied to the raw Digital Elevation Model (DEM), to enhance small relief variations. Several filters have been proposed for this purpose, such as Sky View Factor, Slope, negative and positive Openness, or Local Relief Model (LRM). The efficiency of each of these methods is strongly dependent on the input parameters chosen in regard of the topography of the investigated area. The LRM has proved to be one of the most efficient, but it has to be parameterized in order to be adapted to the natural slopes characterizing the investigated area. Generally, this setting has a single value, chosen as the best compromise between optimal values for each relief configuration. As LiDAR is mainly used in wide areas, a large distribution of natural slopes is often encountered. The aim of this paper is to propose a Self AdaptIve LOcal Relief Enhancer (SAILORE) based on the Local Relief Model approach. The filtering effect is adapted to the local slope, allowing the detection at the same time of low-frequency relief variation on flat areas, as well as the identification of high-frequency relief variation in the presence of steep slopes. First, the interest of this self-adaptive approach is presented, and the principle of the method, compared to the classical LRM method, is described. This new tool is then applied to a LiDAR dataset characterized by various terrain configurations in order to test its performance and compare it with the classical LRM. The results of this test show that SAILORE significantly increases the detection capability while simplifying it.


2021 ◽  
Author(s):  
Robert Emberson ◽  
Dalia Kirschbaum ◽  
Pukar Amatya ◽  
Hakan Tanyas ◽  
Odin Marc

Abstract. Landslides are a key hazard in high-relief areas around the world and pose a risk to population and infrastructure. It is important to understand where landslides are likely to occur in the landscape to inform local analyses of exposure and potential impacts. Large triggering events such as earthquakes or major rain storms often cause hundreds or thousands of landslides, and mapping the landslide populations generated by these events can provide extensive datasets of landslide locations. Previous work has explored the characteristic locations of landslides triggered by seismic shaking, but rainfall induced landslides are likely to occur in different parts of a given landscape when compared to seismically induced failures. Here we show measurements of a range of topographic parameters associated with rainfall-induced landslides inventories, including a number of previously unpublished inventories which we also present here. We find that average upstream angle and compound topographic index are strong predictors of landslide headscarp location, while local relief and topographic position index provide a stronger sense of where landslide material may end up (and thus where hazard may be highest). By providing a large compilation of inventory data for open use by the landslide community, we suggest that this work could be useful for other regional and global landslide modelling studies and local calibration of landslide susceptibility assessment, as well as hazard mitigation studies.


2021 ◽  
Author(s):  
Yu Yuan ◽  
Fei Wang

Abstract In a concentrated area of Chemical Industry Parks (CIPs), emergency relief efficiency is not only affected by the rescue capability of themselves, but also their relationships with other CIPs. Academic literature suggests the use of multiple networks such as transport network and information network, in the emergency process after unexpected events, but rarely integrates them ideally in practice. This paper utilizes the super network theory to propose a regional emergency scheduling model to bridge the logistic and relation among CIPs. The proposed super-network model is composed of resources flow network and relationship network that fill a gap of only considering emergency logistic supply chain. Therefore, the main problem is to how coordinate all the disaster relief actors including primary relief centers (PRC) local relief centers (LRC) and CIPs. The proposed model provides an optional answer regarding the optimal configuration (one-stage or two-stage), the optimal type, number and transportation direction of resources. We turn the optimization problem into a variational inequality problem and develop a modified projection algorithm to solve the problem and compare the performance under several disaster scenarios. The practicability of the model is proved by the result of the numerical example given.


2021 ◽  
Vol 13 (11) ◽  
pp. 2233
Author(s):  
Rasa Janušaitė ◽  
Laurynas Jukna ◽  
Darius Jarmalavičius ◽  
Donatas Pupienis ◽  
Gintautas Žilinskas

Satellite remote sensing is a valuable tool for coastal management, enabling the possibility to repeatedly observe nearshore sandbars. However, a lack of methodological approaches for sandbar detection prevents the wider use of satellite data in sandbar studies. In this paper, a novel fully automated approach to extract nearshore sandbars in high–medium-resolution satellite imagery using a GIS-based algorithm is proposed. The method is composed of a multi-step workflow providing a wide range of data with morphological nearshore characteristics, which include nearshore local relief, extracted sandbars, their crests and shoreline. The proposed processing chain involves a combination of spectral indices, ISODATA unsupervised classification, multi-scale Relative Bathymetric Position Index (RBPI), criteria-based selection operations, spatial statistics and filtering. The algorithm has been tested with 145 dates of PlanetScope and RapidEye imagery using a case study of the complex multiple sandbar system on the Curonian Spit coast, Baltic Sea. The comparison of results against 4 years of in situ bathymetric surveys shows a strong agreement between measured and derived sandbar crest positions (R2 = 0.999 and 0.997) with an average RMSE of 5.8 and 7 m for PlanetScope and RapidEye sensors, respectively. The accuracy of the proposed approach implies its feasibility to study inter-annual and seasonal sandbar behaviour and short-term changes related to high-impact events. Algorithm-provided outputs enable the possibility to evaluate a range of sandbar characteristics such as distance from shoreline, length, width, count or shape at a relevant spatiotemporal scale. The design of the method determines its compatibility with most sandbar morphologies and suitability to other sandy nearshores. Tests of the described technique with Sentinel-2 MSI and Landsat-8 OLI data show that it can be applied to publicly available medium resolution satellite imagery of other sensors.


2021 ◽  
Vol 25 (5) ◽  
pp. 2459-2474
Author(s):  
Kyungrock Paik ◽  
Won Kim

Abstract. Landscape evolution models simulate the long-term variation of topography under given rainfall scenarios. In reality, local rainfall is largely affected by topography, implying that surface topography and local climate evolve together. Herein, we develop a numerical simulation model for the evolution of the topography–climate coupled system. We investigate how simulated topography and rain field vary between “no-feedback” and “co-evolution” simulations. Co-evolution simulations produced results significantly different from those of no-feedback simulations, as illustrated by transects and time evolution in rainfall excess among others. We show that the evolving system keeps climatic and geomorphic footprints in asymmetric transects and local relief. We investigate the roles of the wind speed and the time lags between hydrometeor formation and rainfall (called the delay time) in the co-evolution. While their combined effects were thought to be represented by the non-dimensional delay time, we demonstrate that the evolution of the coupled system can be more complicated than previously thought. The channel concavity on the windward side becomes lower as the imposed wind speed or the delay time grows. This tendency is explained with the effect of generated spatial rainfall distribution on the area–runoff relationship.


2021 ◽  
Author(s):  
Ana Novak ◽  
Sašo Poglajen ◽  
Marko Vrabec

<p>Bathymetric data is commonly visualized as a simple shaded relief, where features oriented parallel to the light source are prone to false topographic perception or are even obscured to the viewer. On the other hand, many relief visualisation techniques developed in past decades are extensively used in visualisation and analysis of high-resolution digital elevation models, especially in geomorphological and archaeological studies. We tested and assessed the suitability of relief visualisation techniques provided by the Relief Visualisation Toolbox (RVT) software for representation of bathymetric data. We used a multibeam-sonar derived bathymetric model with a 10 x 10 m cell size from the Gulf of Trieste (northern Adriatic) characterised by a shallow low-relief seabed. Our results clearly demonstrate the effectiveness of relief visualisation techniques for exposing subtle relief variation in bathymetric data. We find that small-scale features (outcrops, wrecks, pockmarks, reefs, etc.) and negative linear features are best highlighted by “visualization for archaeological topography” (VAT) and “openness” techniques. High-relief features and topographic infection points are pronounced by “hillshade from multiple directions” and “sky-view factor” (SVF). Finally, “principal components analysis” (PCA), “prismatic openness”, “simple local relief model”, “anisotropic SVF” and “local dominance” algorithms show best results when we want to highlight both high- and low-relief features in one image. The tested techniques are far superior to a simple hillshade visualisation especially when imaging low-gradient relief (common on continental shelves and abyssal plains) where topographic details are often not adequately pronounced by hillshading. To our knowledge, this study represents the first attempt to test and compare several relief visualisation techniques for bathymetric data.  </p>


2021 ◽  
pp. 108-111
Author(s):  
V. A. Mansurov ◽  
◽  
K. K. Zhakanov ◽  
N. N. Ermoshkin ◽  
◽  
...  

Bel-Alma deposit is located in the Batken region in Kyrgyzstan. Orographycally, the deposit occurs on the south shoulder of the Kichik–Alai ridge, 1–1.5 km away from the cognominal river. The local relief is high-mountain, rocky and heavily broken. Geologically, the deposit is composed of the Upper Paleozoic rocks, which underlay the stratified Meso-Cenozoic deposits, and amorphous loose overburden. The productive strata is the bottom range of the Sogul series of the Jurassic system. The total thickness of the series in the cross-section is 102.7 m. The Sogul series rocks feature erosion and distinct structural unconformity in the Paleozoic residuum. The overlying strata are represented by red conglomerates and sandstone of the Upper Cretaceous age. The geotechnical estimation of the properties of rocks composing the study area in Bel-Alma deposit is performed. The rock mass structure is determined using geological exploration cores. The parameters of stable pit wall and benches are preliminarily optimized and will be included in the ultimate pit limit design.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Katarzyna Szyga-Pluta

The primary purpose of the study was the determination of the spatial day-to-day variability of extreme air temperatures in Poland and the dependency of large temperature changes on atmospheric circulation in accordance with the Grosswetterlagen (GWL) classification. The goal was achieved based on data from 1966 to 2015, made available by the Institute of Meteorology and Water Management—National Research Institute. Day-to-day changes in maximum and minimum air temperatures were designated with a rate of ≥6 °C (large) and with a rate of ≥12 °C (very large) and their spatial distribution was presented. Finally, the analysis of the dependency of considerable temperature changes on atmospheric circulation in accordance with the Grosswetterlagen (GWL) classification was conducted. The obtained results showed that in Poland in the period 1966–2015 there was a statistically significant increase in the number of large changes in both Tmax and Tmin. The number of large changes in Tmax increases from north to south, and the number of large changes in Tmin from north to east and south of Poland indicate the range of the effect of marine and continental properties on the climate of Poland and the influence of local relief as well as the atmospheric circulation impact. Large changes in Tmax occur more frequently in spring and in Tmin in winter. Large changes in Tmax and Tmin are mainly recorded during cyclonic circulation, however, the anticyclonic circulation types favour especially large decreases in Tmin.


2020 ◽  
Author(s):  
Kyungrock Paik ◽  
Won Kim

Abstract. Landscape evolution models simulate the long-term variation of topography under given rainfall scenarios. In reality, local rainfall is largely affected by topography, implying that surface topography and local climate evolve together. Herein, we develop a numerical simulation model for the evolution of the topography-climate coupled system. We investigate how simulated topography and rain field vary between no-feedback and co-evolution simulations. Co-evolution simulations produced results significantly different from those of no-feedback simulations, as illustrated by transects and time evolution in rainfall excess among others. We show that the evolving system keeps climatic and geomorphic footprints in asymmetric transects and local relief. We investigate the roles of the wind speed and the time lags between hydrometeor formation and rainfall (called the delay time) in the co-evolution. While effects of the wind speed and delay time were thought to compensate each other in the evolving morphology, we demonstrate that the evolution of the coupled system can be more complicated than previously thought. The channel concavity on the windward side becomes lower as the imposed wind speed or the delay time grows. This tendency is explained with the effect of generated spatial rainfall distribution on the area-runoff relationship.


Sign in / Sign up

Export Citation Format

Share Document